

Service Oriented

Architecture

[DRAFT]

February 28, 2006

California Enterprise Architecture Program

Revision History

11/09/2005 Original Draft
11/11/2005 Draft - Replaced California Web Center and CSC with California Service Center and

CSC and updated all pictures, updated Introduction, Web Services, ESB, sections as
well as California SOA Principle #1.

11/28/2005 Draft - Updated drawings and text in security section.
11/30/2005 Draft - Released to CIO website.
12/06/2005 Draft - Updated RSS diagram.
12/08/2005 Draft – Added Accidental Architecture, Loosely Coupled Interfaces, ETL, Batch

Transfers, and FTP, and Information Brokers sections.
1/10/2006 Added Reference Architecture sections
1/30/2006 Update Reference Architecture sections
2/27/2006 Added WSIF definition and Legacy Integration Appendix. Reference Architecture

section updated to emphasize legacy integration into services-based platforms.
Changed Service Models to Service Patterns. Added Legacy Integration Patterns
(Appendix F). Updated Governance & Operation Models.

2/28/2006 Page 2 of 86 [DRAFT]
 California Enterprise Architecture Program

Table of Contents

Target Audience ... 7

SOA Introduction.. 8

The Accidental Architecture ..8

SOA ..8

Loosely Coupled Interfaces ...9

SOA Architecture.. 11

Web Services...11

Service .. 11

Message.. 12

Dynamic Discovery .. 12

Web Service Analogy... 12

Web Service Types .. 14

Base..14

Composite ..14

REST Web Services...15

Web Services with Presentation Logic ...16

Web Service Interfaces.. 16

Web Services Orchestration ..16

Web Service Standards ..19

Enterprise Service Bus (ESB)..21

ETL, Batch Transfers, and FTP ... 21

2/28/2006 Page 3 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 4 of 86 [DRAFT]
 California Enterprise Architecture Program

Information Brokers .. 21

California SOA Goals ... 24

California SOA Principles.. 25

California SOA Architecture.. 28

California Enterprise Architecture...28

California E-Gov Business Services Metamodel28

Reference Enterprise Architecture..29

Enterprise Services.. 30

Shared Services ... 31

Reference SOA Architecture... 32

SOA Service Patterns ...34

Application Consuming Web Services Pattern ... 34

Federated Service Interfaces Pattern ... 34

Federated Composite Web Services Pattern... 35

Federated Search Service Pattern .. 36

Federated Search Engines Pattern... 37

California Service Center (CSC) at DTS Enterprise Service Examples 38

RSS (Real Simple Syndication) Pattern ... 40

California Business Reference and Service Reference Models41

California SOA Security Model ..42

Introduction .. 42

XML Security for Web Services .. 44

Basic Cryptographic Concepts... 44

2/28/2006 Page 5 of 86 [DRAFT]
 California Enterprise Architecture Program

Message Integrity and User Authentication with XML Signatures 45

An Introduction to Web Service Security... 46

Identity and Authentication... 49

Identity Authorities Pattern ... 49

Sharing of Authentication Information... 50

Security Access Markup Language.. 50

A Citizen Request Example... 53

Communities of Interest Pattern... 54

SOA Firewalls for Web Security.. 55

California SOA Center of Excellence.. 58

Introduction ...58

SOA Excellence Model ...59

SOA Management Model ..60

SOA Centralized Functions... 61

SOA Federated Functions ... 63

Appendix A - Federal SOA ...66

Appendix B - Web Service Tenets (Microsoft)70

Appendix C - SOA Best Practices (IBM) ...75

Appendix D - SOA Advantages (Patricia Seybold Group).....................76

Appendix E – WSDL Example..77

Appendix F – Legacy Integration Patterns ...78

Overview ... 78

Integrating Existing Mainframe Apps - Unmodified .. 78

2/28/2006 Page 6 of 86 [DRAFT]
 California Enterprise Architecture Program

Placing Web Service Interfaces on Existing Mainframe Apps 78

Compiling COBOL Code into Web Service Languages .. 78

Appendix G - Definitions ..80

Target Audience

This document has a mix of business and technical perspectives. In general, it is targeted at a high-level
technical audience. However, it does explore important topics that will be of interest to business leaders.

Business leaders – focused on fielding systems that best support their mission and business needs
and achieve the highest return on their IT investments.

Chief Architects – who are responsible for the definition and target planning of an Agency or
Department’s Enterprise Architecture, working with a variety of architectural implementations.

System/Solution Architects – responsible for building / assembling service components that
leverage existing capital assets and business services across the government and industry.

2/28/2006 Page 7 of 86 [DRAFT]
 California Enterprise Architecture Program

SOA Introduction

The Accidental Architecture
Over the past two decades, numerous distributed computing models have arrived on the scene, including
DCE, CORBA, DCOM, MM, EAI brokers, J2EE, .NET, and web services. However, indications are that
only a small percentage of enterprise applications are connected, regardless of the technology being used.
According to a research report from Gartner Inc. ("Integration Brokers, Application Servers and APSs"
10/2002), that number is less than 10%.

Another statistic is even more surprising - of the applications that are connected, only 15% are using formal
integration middleware. The rest are using the ETL and batch file transfer techniques, which are largely
based on hand-coded scripting and other custom solutions.

The Gartner 15% statistics provides a sobering data point that illustrates the true state of integration today.
How are the other 85% of applications connected? A very common situation that exists in enterprises today
is what I refer to as "the accidental architecture."

The accidental architecture is something that nobody sets out to create; instead, it's the result of years of
accumulating one-of-a-kind pointed integration solutions. In an accidental architecture, corporate
applications are perpetually locked into an inflexible integration infrastructure. They continue to be treated
as "silos" of information because the integration infrastructure can't adapt to new business requirements.

Most integration attempts start out with a deliberate design, but over time, other pieces are bolted on and
"integrated," and the handcrafted integration code drifts away from the original intent. Through incremental
patches and bolt-ons, integrated systems can lose their design integrity, especially if the system is maintained
by a large number of people to whom the original design intent may not have been well communicated. It's a
fact of life that individual point-to-point integrations will drift away from consistency, as engineers make
"just this one little change" that's expedient at the time. Eventually, it becomes difficult to even identify the
points for making changes, and to understand what the side effects would be as a result. In a deployed
system this can lead to disastrous results that will negatively affect your business.

Above excerpts from – David A. Chappell (Sonic Software) “Enterprise Service Bus” 2004

SOA
SOA has become a well-known and somewhat elusive acronym. If one asks two people to define SOA one
is likely to receive two very different, possibly conflicting, answers. Some describe SOA as an IT
infrastructure for business enablement while others look to SOA for increasing the efficiency of IT.

SOA is an architectural approach to creating systems built from autonomous services. With SOA,
integration becomes forethought rather than afterthought—the end solution is likely to be composed of
services developed in different programming languages, hosted on disparate platforms with a variety of
security models and business processes. While this concept sounds incredibly complex it is not new—some
may argue that SOA evolved out of the experiences associated with designing and developing distributed
systems based on previously available technologies. Many of the concepts associated with SOA, such as
services, discovery, and late binding were associated with CORBA and DCOM. Similarly, many service
design principles have much in common with earlier OOA/OOD techniques based upon encapsulation,
abstraction, and clearly defined interfaces.

2/28/2006 Page 8 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 9 of 86 [DRAFT]
 California Enterprise Architecture Program

The acronym SOA prompts an obvious question—what, exactly, is a service? Simply put, a service is a
program that can be interacted with through well-defined message exchanges. Services must be designed for
both availability and stability. Services are built to last while service configurations and aggregations are
built for change. Agility is often promoted as one of the biggest benefits of SOA—an organization with
business processes implemented on a loosely-coupled infrastructure is much more open to change than an
organization constrained by underlying monolithic applications that require weeks to implement the smallest
change. Loosely-coupled systems result in loosely-coupled business processes, since the business processes
are no longer constrained by the limitations of the underlying infrastructure.

Services and their associated interfaces must remain stable, enabling them to be re-configured or re-
aggregated to meet the ever-changing needs of business. Services remain stable by relying upon standards-
based interfaces and well-defined messages—in other words, SOAP and XML schemas for message
definition. Services designed to perform simple, granular functions with limited knowledge of how messages
are passed to or retrieved from it are much more likely to be reused within a larger SOA infrastructure. As
stated earlier, recalling basic OO design principles regarding encapsulation and interface design will serve us
well as we design and build reusable Web Services.

SOA and Web Services have recently been used interchangeably. That is because most of the SOA
standards work has focused on web services. However, SOA is more than web services. New standards are
emerging and new vendor products will become available in the near future that will focus on Enterprise
Service Bus concepts. For example, major technology companies are currently working on Service Data
Objects. SDOs will enable uniform access to application data and a common programming model for all
data sources, wherever and however the data is stored. SDOs leverage the simplicity of XML without
introducing the complexity of XML Schema or the performance issues of serialization. Using SDOs and
SOA together, systems programming tasks are separated from the business logic and encapsulated in
reusable services. They simplify business application programming without getting pulled into technology
or implementation details.

Loosely Coupled Interfaces
Most current applications interact via tightly coupled interfaces. This requires the calling application to
know language specific and datatype details of the target application (for example, Java API). This makes
maintenance more difficult and the notion of shared services built on tightly coupled interfaces very difficult.

Loosely coupled interfaces use industry standard XML messages to communicate. This process uses a
messaging broker (or backbone) to handle the delivery details. This is often referred to as an Enterprise
Service Bus.

SOA web services are based on loosely coupled interfaces. XML messaging is the core of web services.
There are many WS* standards that define the different types of XML content.

2/28/2006 Page 10 of 86 [DRAFT]
 California Enterprise Architecture Program

SOA Architecture

SOA presents the big picture of what you can do with Web services. Web services specifications define the
details needed to implement services and interact with them. However, SOA is an approach to build
distributed systems that deliver application functionality as services to end-user applications or to build other
services. SOA can be based on Web services, but it may use other technologies instead. In using SOA to
design distributed applications, you can expand the use of Web services from simple client-server models to
systems of arbitrary complexity.

Thus, individual software assets become the building blocks to develop other applications. You can reduce
the complexity of systems by using a common style of interaction that works with both new and legacy code.
There is a standard way of representing and interacting with these software assets; now the focus shifts to
application assembly based on these building blocks.

Web Services
In order for SOA to be widely adopted, a practical standardized implementation mechanism must exist.
Most Web Services are defined in WSDL (XML) and use standard protocols to communicate (SOAP/HTTP).
So, using Web Services appears to be the practical solution to implementing an SOA. Alternatively, one
could use HTTP-Get or HTTP-Post, but SOAP is much more flexible and can handle complex interactions.

Web Services are comprised of many components (see Web Service Standards in this document). Here are a
few of the most common. Each of these plays an essential role in SOA.

Service
A service in SOA is an application function packaged as a reusable component for use in a business process.
It either provides information or facilitates a change to business data from one valid and consistent state to
another. The process used to implement a particular service does not matter, as long as it responds to your
commands and offers the quality of service you require.

Through defined communication protocols, services can be invoked that stress interoperability and location
transparency. A service has the appearance of a software component, in that it looks like a self-contained
function from the service requester's perspective. However, the service implementation may actually involve
many steps executed on different computers within one enterprise or on computers owned by a number of
business partners. A service might or might not be a component in the sense of encapsulated software. Like a
class object, the requester application is capable of treating the service as one.

Web services are based on invocation using SOAP messages which are described using WSDL over a
standard protocol such as HTTP. Use of Web services is a best practice when communicating with external
business partners.

For example, one might query a web services repository to find a list of services that provide doctor or real
estate licensing. In this case, it might return Professional License Service, Medical Doctor License Service,
Real Estate License Service, Medical Doctor License Verification Service, Medical Doctor Education
Verification Service, etc.

“Individual” services, such as Medical Doctor License Verification Service and Medical Doctor Education
Verification Service are built with a granular set of functionality. They can be combined into “composite”
services such as Medical Doctor License Service which is coarse-grained. Or, they can be wrappered to
handle requirements that are not included in the service interfaces. (see Web Service Types)

2/28/2006 Page 11 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 12 of 86 [DRAFT]
 California Enterprise Architecture Program

Message
Service providers and consumers communicate via messages. Services expose an interface which defines the
behavior of the service and the messages they accept and return. Because the interface is platform and
language independent, the technology used to define messages must also be agnostic to any specific
platform/language. Therefore, messages are constructed using XML documents that conform to XML
schema. XML provides all of the functionality, granularity, and scalability required by messages. That is,
for consumers and providers to effectively communicate, they need a non-restrictive type of system to clearly
define messages; XML provides this. Because consumers and providers communicate via messages, the
structure and design of messages should not be taken lightly. Messages need to be implemented using a
technology that supports the scalability requirements of services. Having to redesign messages will break the
interface to providers, which can prove to be costly.

Dynamic Discovery
Dynamic discovery is an important piece of SOA. At a high level, one searches the registry, gets a URL, and
downloads the WSDL file. The directory service is an intermediary between providers and consumers.
Providers register with the directory service and consumers query the directory service to find service
providers. Most directory services organize services based on criteria and categorize them. Consumers can
then use the directory services' search capabilities to find providers. Embedding a directory service within
SOA accomplishes the following:

1. Scalability of services; you can add services incrementally.
2. Decouples consumers from providers.
3. Allows for hot updates of services.
4. Provides a look-up service for consumers.
5. Allows consumers to choose between providers at runtime rather than hard-coding a single provider.

Web Service Analogy
Although the concepts behind SOA were established long before web services came along, web services play
a major role in a SOA. This is because web services are built on top of well-known, platform-independent
protocols. These protocols include HTTP, XML, UDDI, WSDL, and SOAP. It is the combination of these
protocols that make web services so attractive. Moreover, it is these protocols that fulfill the key
requirements of a SOA. That is, a SOA requires that a service be dynamically discovered and invoked. This
requirement is fulfilled by UDDI, WSDL, and SOAP. SOA requires that a service have a platform-
independent interface. This requirement is fulfilled by XML. SOA stresses interoperability. This
requirement is fulfilled by HTTP. This is why web services lie at the heart of SOA.

Acronyms Practical Examples
UDDI Phone Book
WSDL Contract
SOAP Envelope
HTTP, SMTP, FTP Mail person
Programing (Java, Servlet, ASP.NET, C#) Speech
Schema Vocabulary
XML Alphabet

Simplifying Web Service Terms

The basic steps for locating and calling a web service are illustrated in the below drawing (from
Patricia Seybold Group).

A – Providers register their web services with a common registry, based on a standard such as
UDDI. This includes the location and a detailed description of the service in the form of a WSDL
XML document.

B – An application (or a different web service) invokes the service from provider A.

C – A SOAP message is sent to the URL of the provider service.

E – The service process the request based on its internal functionality, which is hidden from the
external user.

D – The service returns the results in XML format to the requesting application.

2/28/2006 Page 13 of 86 [DRAFT]
 California Enterprise Architecture Program

Web Service Types

Base
Web services encapsulate information, software or other resources, and make them available over the
network via standard interfaces and protocols. Web service architectures are based on the notion of building
a library of specific base services. Generally, the more specific the functionality the better the chances are
that the service can be used in multiple applications. For example, Address Verification Service, Credit Card
Payment Service, and Education Verification Service are candidates for base web services.

Composite
A second powerful notion focuses on aggregating base web services into larger, less granular services.
Complex web services may be created by aggregating the functionality provided by simpler ones. This is
referred to as service composition and the aggregated web service becomes a composite web service. For
example, Dentist License Verification Service and Dentist Education Verification Service might be rolled
into Dentist Qualifications Service.

Composite web services may be developed using a specification language such as BPEL and executed by a
workflow engine. Typically, a composite web service specification is executed by a single coordinator node.
It receives the client requests, makes the required data transformations and invokes the component web
services as per the specification. This mode of execution is known as centralized orchestration.

In decentralized orchestration of composite web services, there are multiple engines, each executing a
composite web service specification (a portion of the original composite web service specification but
complete in itself) at distributed locations. The engines communicate directly with each other (rather than
through a central coordinator) to transfer data and control when necessary in an asynchronous manner.

2/28/2006 Page 14 of 86 [DRAFT]
 California Enterprise Architecture Program

REST Web Services
When the REST style is applied to “Web Services,” SOAP is replaced by a simple XML-over-HTTP GET
message protocol. In a RESTful Web Service, all of the information required to invoke the service is
encoded in the URL. An example of the Yahoo! Local Search service (with results) is shown the below
illustration. As you can see, the entire interaction took place within the browser. Entering the service’s URL
in the browser address line returned an XML document with the name and location of pizza shops near our
office. The simplicity offered by REST makes it attractive to developers.

An alternative to SOAP and REST (GET) is to use POST. This allows updates and it passes the parameters
as form variables. However, these are text only types and POST can’t handle complex SOAP typing.

2/28/2006 Page 15 of 86 [DRAFT]
 California Enterprise Architecture Program

However, REST is not a good candidate where sensitive information is involved since parameters are
exposed on the URL. Also, because it uses the GET method it is intended for query only (not updates).

Web Services with Presentation Logic
Most web services are designed to handle business logic and data manipulation. However, there is an
emerging standard, Web Services for Remote Portlets (WSRP) that is intended to accommodate presentation
logic. So, utilizing this standard one could use a web service to generate web page content.

Web Service Interfaces
There are many cases where you might want to specify a web service interface. Multiple web services could
then implement the interface ensuring consistency. This design pattern is generally used in federated
services. For example, one might create a Professional License interface which would specify the web
methods and their details for determining qualifications. This interface could then be implemented by
Dentist Licensing, CPA Licensing, and Real Estate Licensing services.

An interface is used when you want to standardize a particular piece of functionality, then apply that
functionality to different scenarios.

Web Services Orchestration

An important specification for enterprise integration and service-oriented architecture is business process
execution language (BPEL). In BPEL, a business process is a large-grained stateful service, which executes
steps to complete a business goal. That goal can be the completion of a business transaction, or fulfilling the

2/28/2006 Page 16 of 86 [DRAFT]
 California Enterprise Architecture Program

job of a service. The steps in the BPEL process execute activities (represented by BPEL language elements)
to accomplish work. Those activities are centered on invoking partner services to perform tasks (their job)
and return results back to the process. The aggregate work, the collaboration of all the services, is a service
orchestration.

It is important to understand the best uses (and limitations) of BPEL. BPEL offers a nice model to abstract
orchestration logic from the participating services, and configuration using BPEL over (hard core) coding of
service inter-actions is enticing. However, there is processing overhead and infrastructure expense, so BPEL
might not be the best choice for simple orchestrations. As a rule of thumb, a simple orchestration is
comprised of two to five services and has static interaction patterns.

As a language to develop processes, BPEL is good at executing a series of activities, which occur over time,
and interact with internal and external services. These processes may represent IT scenarios, such as
integration, or business scenarios, such as information exchange, or flows of work.

As for limitations, BPEL does not account for humans in a process, so BPEL doesn’t provide workflow -
there are no concepts for roles, tasks and inboxes. In addition, BPEL does not support really complex
business processes, which evolve during their execution, branching out to incorporate new parties and
activities. Lastly, BPEL does not have native support for business activity monitoring (BAM). There isn’t a
data model for measurement and monitoring.

Here is a modified simple Loan Flow from Oracle’s BPEL demonstration samples. The business flow is as
follows:

 1. A customer requests a loan quote
 2. The loan flow process starts and performs a customer credit check

The following picture shows the process from a BPEL designer’s view. In the center of the diagram is the
Loan Flow process. To the right of the loan flow are the invoked (partner) services. At the top left is the
client invocation <receive>.

2/28/2006 Page 17 of 86 [DRAFT]
 California Enterprise Architecture Program

Using a BPEL design tool, you could click on any of the elements to expand the information and make
modifications. Shown is an expansion of the GetLoanOffer scope. Here are the invocations of the lending
institutions’ services. The structure for the invocations is <flow>, indicating concurrent re-quests. When
both institutions have replied, the GetLoanOffer scope completes, and processing continues to the
SelectOffer scope.

This diagram shows the Loan Flow example from a BPEL designer’s view. The
diagram is an an-notated composite of screen shot clips from Oracle’s BPEL PM tool.

The source code view of this process is shown next. Think of this as the toggle from the design view. The

code is a snippet of the actual process, focusing on the partner links and GetLoanOffer scope. In the partner
links, you’ll notice the first entry is for our BPEL process, with a myRole of “LoanFlowProvider,” and
partnerRole of requestor. The called services partner links follow; note the roles are switched. The myRole is
provider, and partnerRole is requestor.

2/28/2006 Page 18 of 86 [DRAFT]
 California Enterprise Architecture Program

For each partner link, the partnerLinkType element points to the specific operation to be invoked, as
described by the WSDL (portType) of the individual service.

Looking at the GetLoanOffer scope, you can see nested structured activities. There is an outer <se-
quence> to assign the request data prior to making the invocations, and an inner <flow> that allows the
invocations to be concurrent.

The final activity in the process is to provide the requester with the loan offer information.

Web Service Standards
Web services are still evolving and as a result there are a large number of standards. It is likely that some of
the standards will be combined. But for now, here is a quick list of some of the more important ones:

Standards Organizations:
W3C - World Wide Web Consortium http://www.w3.org/

2/28/2006 Page 19 of 86 [DRAFT]
 California Enterprise Architecture Program

http://www.w3.org/

2/28/2006 Page 20 of 86 [DRAFT]
 California Enterprise Architecture Program

HTTP, CSS, SOAP, XML, XPath, XSL, WSDL, WS-Addressing, WSCI, WS Choreography Model, plus
others.

OASIS – Organization for the Advancement of Structured Information Standards http://www.oasis-
open.org/home/index.php

ADVL, CAP, DSML, ebXML, XACML, SAML, SPML, UDDI, UBL, WS-Reliability, WSRP,
WS-Security, WSDM plus others.

WS-I – Web Services Interoperability Organization - Provides interoperability standards in the form of
Profiles. http://www.ws-i.org/ Current profiles include:

• Basic Profile (V1.0, V1.1, Simple SOAP Binding Profile 1.0)
• Attachments Profile 1.0
• Basic Security Profile (V1.0, Security Scenarios)

Standards:
SOAP – Simple Object Application Protocol
XML – eXtensible Markup Language
WSDL – Web Services Definition Language
UDDI – Universal Description Discovery Integration
WSIL – Web Services Inspection Language, may eventually replace UDDI.
WS-Reliability
WS-ReliableMessaging
WSRP – Web Services for Remote Portlets

Process Standards:
BPEL – Business Process Execution Language (Microsoft, IBM)
WSCL – Web Services Conversation Language (HP)
WSCI – Web Services Choreography Interface (BEA, Intalio, SAP, Sun)
BPML – Business Process Modeling Language (W3C)
BPSS – Business Process Specification Schema (ebXML)
WSFL – Web Services Flow Language (IBM)
XLANG - (Microsoft)

Transaction Standards:
WS-Transaction
WS-Coordination

Security Standards:
WS-Security
WS-Trust
WS-Provisioning
WS-Federation
WS-Authorization
WS-Policy
WS-Privacy
SAML (Secure Access Markup Language)
STS (Secure Token Service)

http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php
http://www.ws-i.org/

2/28/2006 Page 21 of 86 [DRAFT]
 California Enterprise Architecture Program

Enterprise Service Bus (ESB)
Connecting systems and automating business processes are strong drivers to reducing costs, improving
operational efficiency, and capturing new business opportunities. For these reasons, technologies that
facilitate integration are a high priority for many technology executives.

While no single product or architecture satisfies all connected system scenarios, there are a variety of
established options in the market today including ETL (Extract Transform Load), EAI (Enterprise
Application Integration), and B2B (Business to Business) technologies. More recently, several emerging
trends and technologies have expanded the potential number of integration scenarios covered by a single
product offering. These include business process management (BPM), which builds on the existing EAI and
B2B stacks with capabilities such as business activity monitoring, business process orchestration, and rules;
and Web services, which provide industry standards for secure, reliable, transacted communication across
platforms.

In a tangential play to the expanding functionality of BPM and the proliferation of Web services, a number of
traditional EAI and message-oriented middleware (MOM) vendors have begun marketing products under the
term "Enterprise Service Bus (ESB)." Introduced in 2002 by Sonic Software and subsequently touted by
analysts as a strategic investment, the ESB term has in recent years permeated the IT vernacular of many
organizations looking for a new "magic bullet" to the ongoing challenge of connecting systems.

ETL, Batch Transfers, and FTP

Extract, Transform, and Load (ETL) techniques such as FTP file transfers and nightly batch jobs are still the
most popular means of integration today.

This often involves nightly dump-and-load operations on data that sits in various applications. The problem
is that there is great potential for data to get out of sync between systems. The recovery process from failure
of a dump-and-load can sometimes take more than a day to reconcile.

Other issues are associated with nightly batch processing as well. Due to the latency of nightly batch jobs,
the best-case scenario is a 24-hour turnaround time when analyzing critical business data. This delay can
severely hinder your ability to react to business events in a timely manner.

Sometimes, the end-to-end processing crossing multiple batch-oriented systems can take up to a whole week
to complete. The overall latency involved in the processing of data from the source to the target can prevent
you from collecting meaningful data that can provide insight into your current business situation.

Information Brokers

Hub-and-spoke integration brokers, or EAI hubs, offer alternatives to the accidental architecture. Integration
brokers have been in existence since the middle of the late '90s, and are built upon MOM backbones or
application server platforms. Some of the companies in the integration-broker market include:

SeeBeyond, webMethods, Asential (Mercator), Vitria, IBM, TIBCO, BEA.

Integration brokers can help with the “accidental architecture” by providing centralized routing between
applications, using a hub-and-spoke architecture. Furthermore, they also the separation of business processes
form the underlying integration code through the use of Business Process Management (BPM) software.

2/28/2006 Page 22 of 86 [DRAFT]
 California Enterprise Architecture Program

However, there are drawbacks to the integration broker approaches. A hub-and-spoke topology doesn't allow
regional control over local integration domains. BPM tools that are built on top of a hub-and-spoke topology
can't build choreography or business processes that can span departments or business units. The integration
broker may be limited by an underlying MOM in its ability to cross physical network LAN segment
boundaries and firewalls.

ESBs are based on lessons learned from integration brokers and best practices from standards-based
infrastructure based on XML, web services, reliable asynchronous messaging, and distributed components.
These collectively form an architecture for a highly distributed, loosely coupled integration fabric to deliver
all the key features of an integration broker, but without the barriers.

Migrating away from the accidental architecture and refactoring toward a uniform and consistent integration
backbone using an ESB, web services, and XML.

ESB Definitions

The recent buzz around ESBs is rivaled only by the ambiguity with which the term is defined. While Sonic
Software and Gartner originally used the term to refer to the XML-enabled SonicXQ MOM product (which
was later renamed "SonicESB"), ESB has also been used to refer to the message bus architectural integration
pattern.

Adding to the confusion around the Enterprise Service Bus are the divergent definitions of the product
category:

"A Web-services-capable infrastructure that supports intelligently directed communication and mediated
relationships among loosely coupled and decoupled biz components." - Gartner Group

"The ESB label simply implies that a product is some type of integration middleware product that supports
both MOM and Web services protocols." - Burton Group

"A standards-based integration backbone, combining messaging, Web services, transformation, and
intelligent routing." - Sonic Software

"An enterprise platform that implements standardized interfaces for communication, connectivity,
transformation, and security." - Fiorano Software

"A system architecture in which applications are integrated using service interactions that are loosely-
coupled and well-defined to support interoperability, and to enable flexibility and re-use." - IBM

"The Enterprise Service Bus is a uniform service integration architecture of infrastructure services that
provides consistent support to business services across a defined ecosystem. The ESB is implemented as a
service oriented architecture using Web Service interfaces." - CBDI

Peter Linkin, senior director of product marketing for BEA's WebLogic puts the problem which ESB’s are
intended to solve into perspective: "What was needed was a system that just told us what the message was,
what the contents were, where it should go, and what the quality of service for it should be. Then, that was
handed off to the next level which is something like a central post office. The postmaster says "send me all
your messages from all these outpoints, and I will intermediate. I'll make sure they get sent individually and
reliably to all the end points." It's a message broker that's driven by business process. The end points don't
have to know about each other so there's ignorance at each end and the logic of the business process is in the
plumbing."

2/28/2006 Page 23 of 86 [DRAFT]
 California Enterprise Architecture Program

Common Characteristics

A variety of vendors now consider themselves players in the ESB space, including Sonic Software, Systinet,
Tibco, Fiorano, Cape Clear, and IONA. IBM Websphere ESB provides extensive support for connecting a
wide range of applications, protocols, and platforms including Web Services messaging infrastructure and
mainframe connectivity. BEA Aqualogic Services Infrastructure includes ESB components. Microsoft has
bundled ESB functionality into its BizTalk Server. Additionally, Windows Communications Framework
will be included in “Windows Vista” which is Microsoft’s next generation web services technology. It will
provide framework services that support WS-Addressing, MTOM, WS-Policy, WS-Security, WS-Trust, WS-
SecureConversation, WS-ReliableMessaging, WS-AtomicTransaction, and WS-Coordination.

While there is no industry-standard definition of the ESB, a common set of characteristics apply to many of
the products in this category:

• Open Standards. Open standards refers to both the ESB solution components (runtime container,
messaging infrastructure, integration services, design-time notations) and the mechanisms for
integrated resources to participate (attach, request, respond) on the bus.

• Message-Based. The communication mechanism of an ESB is messaging, using standard message

notation, protocols, and transports.

• Distributed. The ESB runtime environment can be distributed across a networked environment for
the purposes of quality of service, quality of protection, and economics.

• Routing, Invocation, and Mediation. Routing, invocation, and mediation are the basic functions of

the ESB. Routing includes addressability and content based routing. Invocation refers to the ability
to make requests and receive responses from integration services and integrated resources.
Mediation refers to all translations and transformations between disparate resources including
security, protocol, message notation/ format, and message payload (data/semantics).

• Facilitate. The ESB must coordinate the interactions of the various resources and provide

transactional support.

• Reliable. The ESB must guarantee message delivery.

In simple terms, ESBs:
• Route messages between services.
• Convert transport protocols between requestor and service.
• Transform message formats between requestor and service.
• Handle business events from disparate sources.

Some ESB vendors include additional features:

• Service composition
• Business process management

California SOA Goals

1. Provide the blueprint for a service oriented architecture that supports California business

services and incorporates IAP concepts.

2. Provide a key set of SOA principles.

#California SOA Principles

3. Show how SOA fits into the California Enterprise Architecture model.

#California Enterprise Architecture
#California E-Gov Business Services Metamodel

4. Establish a California SOA Center of Excellence to provide SOA leadership, governance,
and management of SOA components.

 #California Enterprise Architecture Center of Excellence

2/28/2006 Page 24 of 86 [DRAFT]
 California Enterprise Architecture Program

California SOA Principles

1. Design for Ease of Use: Make it easy for your business solution builders to assemble

services into applications and business scenarios. Organize the structure of the California Enterprise
Repository so it can be easily searched, learned, and managed.

2. Design web services with appropriate granularity. The granularity of

operations is an important design point. The use of coarse-grained interfaces for external
consumption is recommended, whereas fine-grained interfaces might be used inside the enterprise. A
coarse-grained interface might be the complete processing for a given service, such as
SubmitPurchaseOrder, where the message contains all of the business information needed to define a
purchase order. A fine-grained interface might have separate operations for:
CreateNewPurchaseOrder, SetShippingAddress, AddItem, and so forth.

While the fine-grained interface offers more flexibility to the requester application, it also means that
patterns of interaction may vary between different service requesters. This can make support more
difficult for the service provider. A coarse-grained interface guarantees that the service requesters
will use the service in a consistent manner. SOA does not require the use of coarse-grained
interfaces, but recommends their use as a best practice for external integration. Service choreography
can be used to create a coarse-grained interface that runs a business process consisting of fine-
grained operations.

3. Reassemble before Rewrite. Individual web services can be assembled into composite

web services. Standard web interfaces can also be used to quickly create new services. Consider
reassembling existing base web services before writing new web services. For example, Federated
Jobs Service is a composite of Available Jobs Service and Process Job Application Service.

4. Web Services should be loosely coupled. The binding from the service

requester to the service provider should loosely couple the service. This means that the service
requester has no knowledge of the technical details of the provider’s implementation, such as the
programming language, deployment platform, and so forth. The service requester typically invokes
operations by way of messages -- a request message and the response -- rather than through the use
of APIs or file formats.

This loose coupling allows software on each side of the conversation to change without impacting
the other, provided that the message schema stays the same. In an extreme case, a service provider
could replace an early implementation based on legacy code, such as COBOL, with an entirely new
code base based on Java language without having any impact on the service requester. This case is
true as long as the new code supports the same message schema.

5. Web Services must have well-defined interfaces. The service interaction

must be well-defined. Web services Description Language (WSDL) is a widely-supported way of
describing the details required by a service requester for binding to a service provider. The service
descriptions focus on operations used to interact with the following:

a. A service
b. Messages to invoke operations
c. Details of constructing such messages
d. Information on where to send messages for processing details of constructing such messages

2/28/2006 Page 25 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 26 of 86 [DRAFT]
 California Enterprise Architecture Program

WSDL does not include any technology details of the implementation of a service. The service
requester neither knows nor cares whether the service is written in Java code, C#, COBOL, or some
other programming language. It can describe a SOAP invocation using HTTP. Because of its
extension mechanisms, it can also define other styles of interaction such as XML content delivered
via JMS, direct method calls, calls handled by an adapter that manages legacy code (CICS), and so
forth.

The common definition for WSDL allows development tools to create common interfaces for various
styles of interaction, while hiding the details of how it invokes the service from the application code.
The Web Services Invocation Framework (WSIF), for example, exploits this capability by allowing a
run-time determination of the best way to invoke a quality service if the service is exposed in more
than one interaction style. See http://ws.apache.org/wsif/ for WSIF details.

6. Design stateless base web services. Services should be independent, self-
contained requests, which do not require information or state from one request to another when
implemented. Services should not be dependent on the context or state of other services. When
dependencies are required, they are best defined in terms of common business processes, functions,
and data models, not implementation artifacts (like a session key). Of course, requester applications
require persistent state between service invocations, but this should be separate from the base
service. Web applications and composite web services can both handle state.

7. Implement business processes via orchestrating web services

into a process flow (BPEL standard). Some business processes can be
implemented in a process flow and called from an application (which implements the entire business
process). The individual nodes within the process flow can call other web services, call out to a
business rules engine, or call a native API (such as Java or .NET). Process flows also manage state,
which means data created by one node is available to other nodes to view, add to, or modify.
Additionally, process flow engines (vendor specific) have built in mechanisms to recover a process
flow should a system or process failure occur.

For example, a Professional License Application might call several web service process flows
(Gather Qualifications, Process Qualifications, Handle Payment, and Create License) to achieve the
business process functionality.

8. A governance structure must be created to manage web service

development and operational environments. By definition, web services are
created with the enterprise in mind. That implies a strong collaboration environment must exist
where interested parties agree on how web services will be defined, built, implemented, deployed,
supported, enhanced, and managed in production environment. Additional budgets, people, tools,
and equipment resources must be allocated appropriately.

9. Implement web service security and policy enforcement

standards: Liberty Alliance and OASIS have defined a large number of web service security
standards. Eventually, the work of both groups will probably be merged into a single set of
standards. WS-Security seems to be the most widely used while many other standards within WS*
are still evolving. However, this should not deter security mechanisms from being designed into web
services.

http://ws.apache.org/wsif/

2/28/2006 Page 27 of 86 [DRAFT]
 California Enterprise Architecture Program

10. Provide for transaction failures: Implement mechanisms and procedures for service
coordination, fail-over, and transaction compensation (undo).

California SOA Architecture

California Enterprise Architecture
The primary goal of the California Enterprise Architecture Program (CEAP) was to define a blueprint for
establishing a customer-centric, flexible, business services driven enterprise architecture that was based on
industry best practices. Because it was anticipated that this effort will be a multi-year process, CEAP was
chartered to focus on five segments (three business segments and two framework segments) as shown in the
below diagram.

SOA is a framework segment as it will provide services to support all of the business segments. In fact, each
service listed in the Service Reference Model (SRM) must map to a business service in the Business
Reference Model (BRM). See California Business Reference Model and California Service Reference
Model for more details.

California E-Gov Business Services Metamodel

2/28/2006 Page 28 of 86 [DRAFT]
 California Enterprise Architecture Program

Looking at the bigger picture, lines of businesses need a metamodel for managing the new services oriented
environment. As new business requirements surface, the enterprise repository would be searched to see if
there are existing services that could be reused or combined to meet some or all of the new business
requirements. Organizations that develop applications (or manage the development of applications) would
need to include a new EA Engineering function which would be responsible for integrating existing services
as well as compositing new services.

Reference Enterprise Architecture
This section defines the architecture to strive for. It is intended to be a guideline for technical designers,
application architects and technical managers. It suggests using components (particularly web service-based)
where possible as well as reducing the number of platforms to three (.NET, J2EE, and Mainframe). This
means migrating older applications to either .NET or J2EE platforms while integrating existing mainframe
applications into these newer platforms. (See Appendix F Integrating Legacy Patterns). Within existing
constraints, business logic that has common functionality across applications should be moved to .NET and
J2EE based applications where it can be implemented as shared services.

A new type of infrastructure will be required to support a services-based environment. This means new
messaging, routing, XML transforming, and security components. A new business activity monitor (BAM)
tool would be quite useful in keeping track of service component performance and availability.

In most situations, applications should be moved to a browser-based environment. This simplifies client
management and facilitates ease of use.

2/28/2006 Page 29 of 86 [DRAFT]
 California Enterprise Architecture Program

Enterprise Services
Business services in this category have state-wide scope. It is recommended that usage be mandatory since
the most efficient usage of an enterprise service comes from using what has already been built. These
services are typically provided via a COTS/packaged application. Examples are SAP and Oracle
Applications for HR, Admin, Financial, Supply Chain and Asset management.

However, other types of applications also meet these criteria such as an enterprise search service and a RSS
(Real Simple Syndication) service. The latter provides subscription, alert, news, and FAQ’s general purpose
services.

2/28/2006 Page 30 of 86 [DRAFT]
 California Enterprise Architecture Program

Shared Services
This class of service has a scope of “community of interest”. That is, they are not state-wide, but are very
important to a particular group that share common business requirements. Shared services are usually not
stand-alone; rather they are consumed by business applications. Therefore, they are ideally suited for a
component-based architecture such as web services.

Shared services fall into three categories; those developed by a single organization, those that are primarily
developed collaboratively by multiple organizations, and composite services. An Address Verification
Service is a good example of a single development, while GIS Web Services is a great example of multiple
organization development.

2/28/2006 Page 31 of 86 [DRAFT]
 California Enterprise Architecture Program

Composite services are an aggregate or “roll up” of base (“atomic”) services. These are typically
orchestrated in a business process fashion. While there are competing standards in this area, it appears that
BPEL (Business Process Execution Language) is the more popular one. So, it is important to pick a vendor
tool that supports BPEL. A Composite Service example might be a Payment Service which could be a re-
assembly of Credit Card Payment Service and EFT Payment Service.

Because of the distributed nature of shared services, they need a good management environment. A tool will
be required to manage the orchestration of web services, handle XML messaging that web services use to
communicate, is based on open standards, provides mediation between services, coordinates interactions and
ensures reliable delivery of the messages.

Reference SOA Architecture

Establishing an Enterprise Reference Architecture is important for the big picture. SOA is a key subset of
the enterprise and it is sometimes not obvious where SOA fits into the enterprise. That is, one can get lost in
the many details and standards surrounding SOA. So, a Reference SOA Architecture is provided.

Note web services can be either internal or external to an organization. Using services developed and made
public by other organizations is highly encouraged to reduce duplication of resources.

2/28/2006 Page 32 of 86 [DRAFT]
 California Enterprise Architecture Program

From a security perspective, it is desirable to put as much in the Internal tier as possible. Only components
located in the DMZ are accessible via the Internet. The DMZ could be architected to provide different levels
of security based on profile group. For example, UDDI repositories would not be exposed to Public. Proxy
services and security policies could be applied at the web server level.

Web applications manage user interactions, and they invoke business processes. From an SOA perspective,
web applications invoke web service APIs via SOAP (XML) messaging. A proxy mirrors the actual web
service interface. Web services are defined in a WSDL (Web Services Definition Language) document
which may be registered in a UDDI repository (which provides location services).

Services are actually implemented in the Internal tier. The XML messages are processed by the messaging
infrastructure when the appropriate service is called by a business process. An XML Firewall could be
deployed to look inside SOAP messages and enforce the security section of the message. Web services are
implemented as a Business Component in a specific language (.NET/C# or J2EE/Java). Access Services
handle formatting and communications among data sources including packaged applications, rules, report,
and security servers.

2/28/2006 Page 33 of 86 [DRAFT]
 California Enterprise Architecture Program

SOA Service Patterns

There are a number of different ways in which web services can be used. Following, are patterns that
illustrate each of the architectures.

Application Consuming Web Services Pattern
A user may come to the California Service Center and be redirected to the Register Vehicle Web Application
at DMV which could be either an ASP or JSP application. Function modules within this application directly
invoke (consume) Address Verification and Credit Card Payment web services. FTB is a service provider
with the Credit Card Payment and EFT Payment services. DMV is both a provider and consumer of the
Address Verification service.

Consuming Web Services Pattern

Other web applications might consume Address Verification, Credit Card Payment, and EFT Payment
services. In fact, they would be registered with a UDDI repository and available to any application (with
appropriate policy and security credentials).

The fact that the vehicle registration application is using web services from multiple providers is completely
hidden from the user as these enterprise components collaborate behind the scenes to fulfill this business
service request. The customer experience is a seamless end-to-end business interaction regardless of the
collaboration efforts required behind the scene.

Federated Service Interfaces Pattern
2/28/2006 Page 34 of 86 [DRAFT]
 California Enterprise Architecture Program

In many cases it makes sense for the CSC to handle user interactions as a single, customer-centric site. For
example, a web application might be developed and run at CSC that would serve as a single, easy to use and
always up to date place for all state employees to go for available jobs. In the below example, the actual
departments would supply the most current job details while the CSC application would handle filtering and
presenting the information in a user-friendly fashion. The displayed information could be organized by
department, or by job classification, and not only provide available job details but also handle applying for a
job.

This example demonstrates the use of web service interfaces. An Available Jobs interface is created with
two web methods (openJobs and jobDetails). An Apply Jobs interface is also created. These interfaces are
placed in the UDDI repository and made available for use in any web service. CSC, DMV, and EDD have
each created an Available Jobs Service which implements these interfaces. Since the service name is the
same, each department must have a different namespace. This means different WSDL’s will be generated
and placed in the UDDI repository. This enforces standardized behavior while allowing different content. In
this case, the Available Jobs Service at DMV only returns DMV jobs.

Federated Web Services Pattern

The above example also demonstrates the notion of web service federation. Federated Jobs Service
implements a web method called queryJobs which is invoked by the Jobs Application. Federated Jobs
Service then consumes Available Jobs Services at both DMV and EDD. So, the content returned to Jobs
Application is federated among the web services. Federated Jobs Service might have additional logic for
filtering jobs and categorizing them across departments.

Federated Composite Web Services Pattern

2/28/2006 Page 35 of 86 [DRAFT]
 California Enterprise Architecture Program

Web services can be aggregated to form higher lever, or more course-grained services. The previous
example demonstrated one web service (Federated Jobs Service) directly consuming other web services
(Available Jobs Service at DMV, Available Jobs Service at EDD). An alternative would be to use a
composite web service.

In the following example, Professional License Service is a composite web service that is compliant with the
BPEL standard. This means one can orchestrate the flow of consumed web services. In this example, the
Identity node consumes Citizen Identity Service at DMV. The Academic Verification node consumes
Academic Verification Service at a university. The License Verification node combines the License
Verification Service at an exam board. Finally, the Criminal Background Check node consumes Criminal
Background Service at DOJ.

Composite Web Services Pattern

One might use a composite web service when there are many services to be consumed. The order in which
they are consumed can be easily changed.

Federated Search Service Pattern
The Federated Search Service is a more complex example of federated services. The current State search
engine could be redesigned to handle a variety of different search requests while returning more meaningful
results. That is, results that meet customer expectations more closely.

In the next example, a web services interface could be utilized in conjunction with a search engine. This
interface would expose the types of searches that any department application could implement. So,
consistency across departments would be achieved as it would appear from the user perspective as if they
were interacting with a single search application.

2/28/2006 Page 36 of 86 [DRAFT]
 California Enterprise Architecture Program

In fact, the search engine could be configured to index information in a more useful manner such as by user
type (citizen vs business). Additionally, filtering could be applied to the spider process to not index certain
content (for example, those without titles, or those defined in duplicate locations).

If the state came up with a common language (taxonomy) for defining content, then the results of the spider
could be indexed according to the taxonomy.

This is a federated services approach since the indexes are maintained at DTS, but the actual content is
located in each department.

Enterprise Search Service Pattern

Search applications could use profile and policy information to influence search results. Additionally, search
applications can use different parts of the search interface, as well as aggregate or filter the results. So, the
user experience could be very different. A search application could ask the search engine (via the search
interface and broker) to only look only in certain collections or to use only certain parts of a taxonomy.

Federated Search Engines Pattern
The above example illustrates a centralized search engine approach. Economies of scale, lower
infrastructure costs, consolidated databases, lower spider traffic, and lower staff costs are some of the reasons
to use this approach. It is particularly effective as a state-wide search service.

However, some departments may want to retain their own search engines. For example, it might make sense
for Franchise Tax Board to maintain a State Taxes search engine where one could go to get answers to any
tax question.

2/28/2006 Page 37 of 86 [DRAFT]
 California Enterprise Architecture Program

Depending on the scope of the State Taxes search engine, FTP might spider just their own site or they could
spider FTP, BOE, and other sites that deal with taxes. It is likely that this search engine would return a more
comprehensive result set than the state-wide search engine.

FTB would define a web service interface for their search engine and register this interface with the UDDI
repository. Then, any search application would have the choice of implementing the CSC or FTB search
interface (or both interfaces).

Federated Search Engines Pattern

By using standard web service interfaces as the mechanism for invoking searches, the underlying search
engines could be from different vendors.

California Service Center (CSC) at DTS Enterprise Service Examples
The current State Portal will be replaced by the California Service Center (CSC). Its goal will be to provide
a single point of entry for all users interacting with California. The California Service Center will be the
customer-facing part of the new services oriented enterprise environment.

The CSC will probably be organized by user service type, for example Citizen, Business, State Employee,
Local (County and City) Employee, etc. This means the user screens could be tailored based on the type of

2/28/2006 Page 38 of 86 [DRAFT]
 California Enterprise Architecture Program

user. That is, all information of interest to Citizens could be grouped into a Citizen main page. This implies
that the CSC is enabled to identify the difference between user types. In many cases this could be handled
via profiles which would allow CSC to automatically return the correct page type. Another way might be to
let the user select which profile they want for a given session. In any case, specific domain names could be
established to differentiate user types. For example, CSC.ca.gov could resolve to the main CSC page where
a user could select a profile, citizen.CSC.ca.gov would return the main page for Citizens,
business.CSC.ca.gov for Business uses, etc.

There are certain enterprise services that are good candidates to run at CSC. Links and buttons on any page
could be encoded to pass whether or not identification is required and if so, what level. The CSC application
could then invoke an Identity Service which would communicate with an “identity provider”. See California
SOA Security Model for more details. Once the user is identified by the appropriate provider service, the
request could be handed to the appropriate application along with the security token.

Another CSC service example might be a profile application and a Profile Service to retrieve customer
preferences. These preferences might be used to alter the page layout and content as well as for
personalization. The Profile Service could be consumed by other applications, anywhere profile information
is needed.

California Service Center – Enterprise Services

Another example illustrated in the above diagram is a Knowledge Service. The user could inquire “How do
I…” and the Knowledge Service running at the CSC would be utilized to provide the appropriate answers.

As noted, some services should be centralized such as Identity and Enterprise Search. Others would
probably be primarily used by CSC, but would be available for use by other applications (Profile, RSS, and
Knowledge services).

2/28/2006 Page 39 of 86 [DRAFT]
 California Enterprise Architecture Program

RSS (Real Simple Syndication) Pattern
RSS is a very popular method of publishing regularly updated information. It was originally created by
Netscape and used primarily by news and media companies as a way of syndicating news. When Netscape
lost interest, Userland Software picked it up and continued to enhance it. A parallel effort using a different
format was initiated by the W3C standards body. Fortunately, the formats have merged with RSS 2.0. It is
now widely used by many companies and public entities as an easy way to keep customers informed of
changes.

A couple of public sector examples are the states of Virginia and Utah. Virginia provides 34 different feeds
on topics like Featured Sites, Emergency Notifications, Press Releases, Citizen Services, Online Services,
Family Services, Educational Services, Government Resources, License and Permits, Forms, and Business
Services. Changes to any of the above topics are placed in the appropriate RSS file which is registered with
organizations that monitor RSS feeds.

Anyone can download a free RSS Reader (called a News Aggregrator), and subscribe to any RSS feed
directly or to any of the many published sites that allow an individual to subscribe to multiple feeds.
Additionally, RSS information can be pushed out to cell phones and PDA devices.

The California Service Center could provide an RSS Service that monitors the feeds from all state
departments. Then, anyone could subscribe to the service and pick which feeds they were interested in and
what format they would like to receive the information.

From a technical perspective, open source class libraries already exist that do most of the work. Some
examples: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml02172003.asp
http://www.rssdotnet.com/
http://aspnet.4guysfromrolla.com/articles/102903-1.aspx

In additional to the above Microsoft-based components, there are also many freely available products that are
written in PERL, PHP, JavaScript, and Java.

2/28/2006 Page 40 of 86 [DRAFT]
 California Enterprise Architecture Program

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml02172003.asp%20
http://www.rssdotnet.com/
http://aspnet.4guysfromrolla.com/articles/102903-1.aspx

Here are links to states:
Virginia http://www.rssgov.com/archives/000127.html
Utah http://www.utah.gov/

Utah sponsors an RSS workshop http://www.rssgov.com/rssworkshop.html. This site has a great list of other
state RSS feeds as well as a good, detailed explanation of RSS.

Any site that displays either or publishes an RSS feed.

California Business Reference and Service Reference Models
In a service-oriented architecture, all business services are defined in the business reference model (BRM).
The BRM is part of the Enterprise Repository (core.ca.gov). One of the key principles behind SOA is to
break down business services into reusable components that can be combined and shared across the
enterprise. These shared components are called web services and they are defined in the service reference
model (SRM) which is also located in the Enterprise Repository.

Both the BRM and SRM are hierarchical. The exact structure of the model will be determined at design
time. However, for the purpose of illustration, the following diagram shows one way the BRM and SRM
might be organized.

Customer
Audience

Business
Service
Group

Line Of
Business

Business
Function Business Service Service

Domains
Service
Types Service Components WS

Type

Payment Services
Credit Card Payment

Service Base
Customer
Services

Address Verification
Service Base

Check Criminal
Background Service Base

Check License
Qualifications Service Base
Check Qualifications
Fulfillment Service Base

Business
Management

Services
Payment Services EFT Payment Service Base

Student Financial
Eligibility Service Base

Student Academic
Eligibility Service Base

State Disability Tax Reporting
Services

Employer
Reporting
Services

Base Wage Reporting
Service Base

EFT Payment Service Base
Credit Card Payment

Service Base

Issuance Services Issue Permit Service Base

Confirmation
Services

Email Confirmation
Service Base

Position Control Position Tracking
Employee History Emp Pos Track
Salary & Leave Comp Tracking

Time & Attendence Attend Tracking

Personnel Transaction BaseE2G

Organization &
Position

Compensation
Management

HR
Management

Government
Services

Management

Employee
Services

C2G

B2G

Grant Eligibility
Services

Payment ServicesBusiness
Management Revenue

Collection
Business Tax

Payments
Employer

Income Taxes

Personal Income
Tax

B2G

Title IV GrantsFinancial
Assistance

Payment Services
Business

Management
ServicesRegulatory &

Compliance Electronic Delivery
Services

Encroachment
PermitPermitsLicensing

Grants Service

Business Reference Model

Medical Doctor
LicenseC2G Regulatory &

Compliance Licensing Professional
Licensing

Professional
License Qualifying

Services

Authorization
Services

Service Reference Model

Business
Management

Services

Business Payment
Service Composite

Cal-GrantPost-Secondary
Education

2/28/2006 Page 41 of 86 [DRAFT]
 California Enterprise Architecture Program

http://www.rssgov.com/archives/000127.html
http://www.utah.gov/
http://www.rssgov.com/rssworkshop.html

2/28/2006 Page 42 of 86 [DRAFT]
 California Enterprise Architecture Program

BRM: For a given customer audience (C2G, B2G, E2G, etc.), the top level category might be Business
Service Group. This is decomposed into Lines of Business, which in turn are broken down into Business
Functions, and finally, into actual Business Services. So, in the diagram example, Medical Doctor License
might be a Business Service that is part of Professional Licensing Business Function which is part of the
Licensing Line of Business, which belongs to the Regulatory & Compliance Business Service Group.

SRM: The SRM might have a structure of Service Domains, Service Types, and Service Components. So, in
the above example, a Medical Doctor License Business Service might consume Credit Card Payment,
Address Verification, Check Criminal Background, Check License Qualifications, Check Qualifications
Fulfillment web services.

As an example of service reuse, the above diagram shows Credit Card Payment Service being used by
Medical Doctor License and Encroachment Permit business Services. Notice, that Personal Income Tax
Business Service is using Business Payment Service. This is a composite type of web service meaning that it
includes other types of payment services (possibly, Credit Card Payment, EFT Payment, and Cash).

California SOA Security Model

Introduction
Exchange of information over the Internet is vital but may have security implications. Security issues over
the Internet are important, because it is an insecure and untrustworthy public network infrastructure, prone to
malicious attacks by professional and amateur intruders.

All of the information available for access over the Internet does not have the same level of business confidentiality. In
the public sector, much information is intended to be accessed and viewed by anyone. However, there are a number of
business transactions that do require knowing who the party is as well as the party’s access privileges.

Organizations usually secure company resources available on the network and online services by defining business
roles, access rights, and system policies. That's where firewalls, among other mechanisms, have a role to play. A
network level firewall sits at the doorstep of a private network as a guard and typically provides the
following security services:

• monitors all incoming traffic;
• checks the identity of information requesters trying to access specific company resources;
• authenticates users based on their identities, which can be the network addresses of service

requesters or security tokens;
• checks security and business policies to filter access requests and verify whether the service

requester has the right to access the intended resource; and
• provides for encrypted messages so that confidential business information can be sent across the

untrustworthy Internet privately.

The main purpose of a firewall is to protect the physical boundaries of a network. There is a physical
boundary of the private network and the only way to get into the network is through the firewall. While
packets of network traffic and messages pass through a firewall, they are authenticated and checked for
possible intrusion or malicious attacks.

When one department application interacts with an enterprise component provided by a different department,
it cannot control and may not even know much about the IT infrastructure of the other department. For
example, the first department might be using a Java solution over Solaris servers and the second department
may be using .NET or some other technology. How can interoperability between the two departments be
ensured?

2/28/2006 Page 43 of 86 [DRAFT]
 California Enterprise Architecture Program

It is not feasible to sit down with all departments and decide about messaging formats for exchange of
information and interoperability. This will create an endless task of designing and redesigning message
formats for each department. The cost of this type of legacy integration is so high that such techniques are
only feasible in high IT return private sectors, such as airline and banking industries. Most government e-
commerce isn't able to justify IT infrastructure development costs in this way.

But if applications shift from legacy integration to the Service Oriented Architecture (SOA) provided by web
services, interoperability issues are much easier to deal with. Services in SOAs are similar to classes in
object-oriented languages; both can service calls to their methods. The only difference is that services in
SOA are truly distributed: they form a distributed system architecture and are independent of their own or the
caller's location.

Service-orientation stems from the proven and well-known object oriented programming basics. The
concepts of abstraction and encapsulation were developed in the early days of OOP, owing to their
importance in developing reusable software components and class libraries. According to the OOP basics, a
class or an object is wrapped inside a boundary and a well-defined interface is exposed to other objects for
interaction.

A web services-based SOA depends on SOAP servers to process messages. A SOAP server holds only the
information related to the web services it is hosting (names of the services, names of the methods in each
service, where to find the actual classes that implement the web services, and so on) and has the capability of
processing incoming SOAP requests. However, the SOAP server itself doesn't have any capability to check
whether the incoming SOAP request is coming from an anonymous customer or a known business partner.
SOAP cannot distinguish between sensitive and non-sensitive web services and cannot perform user
authentication, authorization, and access control.

It is clear that a remote client who has accessed a SOAP server enjoys the opportunity of invoking
any method of any services hosted on the particular SOAP server. So, one might correctly conclude
that it is not safe to host web services of different levels of sensitivity on the same SOAP server.

Even if you deploy a network-level firewall to protect from intruders, you will not be able to distinguish
between different users once it has reached the SOAP server. It is possible that an intruder authenticates
himself as an anonymous user, reaches the SOAP server, and invokes sensitive web services meant for a
different user. Thus, a SOAP server is like a hole in your network.

There are two solutions to this problem:

1. Use a different SOAP server for each level of sensitivity, so that different authentication policies can
be enforced on each sensitivity level. This solution may seem appropriate for web services today.
However the real advantage of web services lies in the next generations where web services will not
just be invoked by browser-assisted human clients, but web services will invoke each other to form
chained or transactional operations. Such complex web service infrastructure will be very hard and
expensive to build with the idea of having a separate SOAP server for each authorization policy. In
addition, this idea hardly allows building reusable or off-the-shelf security solutions.

2. The second option is to make the firewall XML and SOAP aware. The firewall will be able to

inspect SOAP messages, trying to match user roles with access lists, policy levels, and so on. This
solution is a better approach. It also allows building XML-based standard security protocols, which
can be adopted by security vendors to ensure interoperability.

2/28/2006 Page 44 of 86 [DRAFT]
 California Enterprise Architecture Program

3.
Web service users can add security information (signature, security tokens, and algorithm names) inside
SOAP messages, according to the XML-based security protocols. The XML and SOAP-aware firewall will
check the message before it reaches the SOAP server, so that it is able to detect and stop intruders before
they are able to reach the service.
Based on the second approach described above, W3C and OASIS are developing several XML-based
security protocols. These protocols will define the various security features of an XML and SOAP-aware
firewall.

XML Security for Web Services
This section very briefly discusses the high level features of some of the security protocols from W3C and
OASIS.

The XML Signature specification is a joint effort of W3C and IETF. It aims to provide data integrity and
authentication (both message and signer authentication) features, wrapped inside XML format.

W3C's XML Encryption specification addresses the issue of data confidentiality using encryption techniques.
Encrypted data is wrapped inside XML tags defined by the XML Encryption specification.

WS-Security from OASIS defines the mechanism for including integrity, confidentiality, and single message
authentication features within a SOAP message. WS-Security makes use of the XML Signature and XML
Encryption specifications and defines how to include digital signatures, message digests, and encrypted data
in a SOAP message.

Security Assertion Markup Language (SAML) from OASIS provides a means for partner applications to
share user authentication and authorization information. This is essentially the single sign-on (SSO) feature
being offered by all major vendors in their e-commerce products. In the absence of any standard protocol on
sharing authentication information, vendors normally use cookies in HTTP communication to implement
SSO. With the advent of SAML, this same data can be wrapped inside XML in a standard way, so that
cookies are not needed and interoperable SSO can be achieved.

eXtensible Access Control Markup Language (XACML) presented by OASIS lets you express your
authorization and access policies in XML. XACML defines a vocabulary to specify subjects, rights, objects,
and conditions -- the essential bits of all authorization policies in today's e-commerce applications.

Basic Cryptographic Concepts
The discussion of message integrity, user authentication, and confidentiality employs some core concepts:
keys, cryptography, signatures, and certificates. Following, cryptographic basics will be briefly discussed.

Asymmetric cryptography
A popular cryptographic technique is to use a pair of keys consisting of a public and a private key. First, you
use a suitable cryptographic algorithm to generate your public-private key pair. Your public key will be
open for use by anyone who wishes to securely communicate with you. You keep your private key
confidential and do not give it to anybody. The public key is used to encrypt messages, while the matching
private key is used to decrypt them.

In order to send you a confidential message, a person may ask for your public key. He encrypts the message
using your public key and sends the encrypted message to you. You use your private key to decrypt the
message. No one else will be able to decrypt the message, provided you have kept your private key
confidential. This is known as asymmetric encryption. Public-private key pairs are also sometimes known
as asymmetric keys.

2/28/2006 Page 45 of 86 [DRAFT]
 California Enterprise Architecture Program

Symmetric cryptography
There is another encryption method known as symmetric encryption. In symmetric encryption, you use the
same key for encryption and decryption. In this case, the key has to be a shared secret between
communication parties. The shared secret is referred to as a symmetric key. Symmetric encryption is
computationally less expensive than compared to asymmetric encryption. This is why asymmetric
encryption is ordinarily only used to exchange the shared secret. Once both parties know the shared secret,
they can use symmetric encryption.

Message digests
Message digests are another concept used in secure communications over the Internet. Digest algorithms are
like hashing functions: they consume (digest) data to calculate a hash value, called a message digest. The
message digest depends upon the data as well as the digest algorithm. The digest value can be used to verify
the integrity of a message; that is, to ensure that the data has not been altered while on its way from the
sender to the receiver. The sender sends the message digest value with the message. On receipt of the
message, the recipient repeats the digest calculation. If the message has been altered, the digest value will
not match and the alteration will be detected.

But what if both the message and its digest value are altered? That kind of change may not be detectable at
the recipient end. So a message digest algorithm alone is not enough to ensure message integrity. That's
where we need digital signatures.

Digital signatures
Keys are also used to produce and verify digital signatures. You can use a digest algorithm to calculate the
digest value of your message and then use your private key to produce a digital signature over the digest
value. The recipient of the message first checks the integrity of the hash value by repeating the digest
calculation. The recipient then uses your public key to verify the signature. If the digest value has been
altered, the signature will not verify at the recipient end. If both the digest value and signature verification
steps succeed, you can conclude the following two things:

• The message has not been altered after digest calculation (message integrity); and
• The message is really coming from the owner of the public key (user authentication).

Certificates
In its most basic form a digital certificate is a data structure that holds two bits of information:
The identification (e.g. name, contact address, etc.) of the certificate owner (a person or an organization); and
the public key of the certificate owner.

A certificate issuing authority issues certificates to people or organizations. The certificate includes the two
essential bits of information, the owner's identity and public key. The certificate issuing authority will also
sign the certificate using its own private key; anyone interested party can verify the integrity of the certificate
by verifying the signature.

Message Integrity and User Authentication with XML Signatures
The XML Signature specification, XML Digital Signature, (XMLDS) has been jointly developed by W3C
and IETF. It has been released as a recommendation by W3C. XML Signature defines the processing rules
and syntax to wrap message integrity, message authentication, and user authentication data inside an XML
format.

2/28/2006 Page 46 of 86 [DRAFT]
 California Enterprise Architecture Program

As an example, a department includes message integrity and user authentication information within a SOAP
method invocation. The XML firewall of the department receiving the message, on receipt of the invocation,
will need to look into the SOAP message to verify that:

• The message has not been altered while on its way to the web service (message integrity); and
• The requester is really the trusted user (user authentication).

The XML firewall will only let the request pass onto the SOAP server if both these conditions are met. It
should be noted that XMLDS, isn't SOAP-specific. XMLDS can be used to insert signatures and message
digests into any XML instance, SOAP or otherwise.

An XMLDS implementation can create SOAP headers to produce signed SOAP messages. The XML
firewall sitting at the recipient's end will process the SOAP header to verify the signatures before forwarding
the request to the SOAP server. We can achieve the following two security objectives through this
procedure:

• We can verify that the SOAP message that we received was really sent by the sender we think it
came from.

• We can verify that the data we received has not been changed while on its way and is the same that
the sender intended to send.

XML Encryption
The XML Encryption specification satisfies confidentiality requirements in XML messages. XML
encryption offers several features.

• You can encrypt a complete XML file.
• You can encrypt any single element of an XML file.
• You can encrypt only the contents of an XML element.
• You can encrypt non-XML data (e.g. a JPG image).
• You can encrypt an already encrypted element (i.e., "super-encryption").

XML Encryption Processing
How will our XML firewall work with these encryption concepts? It will receive SOAP messages with
encrypted elements or content and translate the contents to a decrypted form before forwarding the decrypted
SOAP message request to the SOAP server.

The recipient of an XML encrypted file will decrypt the XML encrypted file in the following sequence:

1. Extract the encrypted content of the CypherValue element.
2. Read the algorithm attribute value of the EncryptionMethod element.
3. Read the Type attribute values of the EncryptedData element.
4. Obtain the keying information form the ds:KeyInfo element.
5. Use the information gathered in steps 1, 2, 3, and 4 to construct the plain text (decrypted) file.

An Introduction to Web Service Security
How will our XML firewall use XML signatures and encryption to protect SOAP servers? We have seen
examples of using the two technologies individually, but the question of how to apply these two technologies
in an XML firewall application to protect a SOAP server still needs to be addressed, especially since neither
XMLDS nor XML Encryption are SOAP-specific. So why have we put all the signature related information
in the SOAP header? Why not wrap it inside the SOAP body?

2/28/2006 Page 47 of 86 [DRAFT]
 California Enterprise Architecture Program

The Web Services Security (WSS) specification from OASIS defines the details of how to apply XML
signature and XML encryption concepts in SOAP messaging. WSS relies on XMLDS and XML encryption
for low level details and defines a higher-level syntax to wrap security information inside SOAP messages.

WSS describes a mechanism for securely exchanging SOAP messages. It provides the following three main
security features:

1. Message Integrity
2. User Authentication
3. Confidentiality

It is an example SOAP message that carries security information according to the WSS syntax. Notice the
request's header is carrying digital signature information.

<?xml version="1.0" encoding="utf-8"?>
<SOAP:Envelope
 xmlns:SOAP="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <SOAP:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken
 ValueType="wsse:X509v3"
 EncodingType="wsse:Base64Binary"
 wsu:Id="MyCertificate">
 LKSAJDFLKASJDlkjlkj243kj;lkjLKJ...
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml -exc-c14n# "/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#myRequestBody">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>BSDFHJYK21f...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 GKLKAJFLASKJ52kjKJKLJ345KKKJ...
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#MyCertificate"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP:Header>
 <SOAP-ENV:Body>

2/28/2006 Page 48 of 86 [DRAFT]
 California Enterprise Architecture Program

 <s:GetMyAccountBalances
 xmlns:s=“http://ftb.ca.gov/partnerservice/”
 ID="myRequestBody">
 <!--Parameters passed with the method call-->
 </s:GetMyAccountBalances>
 </SOAP-ENV:Body>

Here are the simple points about the above listing that will help you understand WSS syntax:

1. The SOAP:Envelope element contains namespace declarations for SOAP, WSS, and XMLDS.

2. The SOAP:Header element contains just one child element (wsse:Security), which is the

wrapper for all the security information. The wsse:Security element has two child elements,
namely a wsse:BinarySecurityToken element and a ds:Signature element.

3. The wsse:BinarySecurityToken element contains a security token. A security token is like a

security pass or an identity card that you are required to show if you want to enter a restricted access
area. There are several types of electronic security tokens.

The most popular and widely used security token is a login-password pair, like the one you use while
checking your e-mail.

A login-password pair is a human readable security token. There are some security tokens that are in
binary form (and therefore not necessarily human readable). Such tokens are referred to as binary
security tokens. For example an X509 certificate (a widely popular format for digital certificates
developed by ITU-T) is a binary security token.

The ValueType attribute of the wsse:BinarySecurityToken element tells what type of
binary security token is wrapped inside this BinarySecurityToken element. The ValueType
attribute contains wsse:X509v3 as its value, which identifies X509 certificates.

The EncodingType attribute of the wsse:BinarySecurityToken element tells the
encoding of the binary security token. As already explained, it is not possible to wrap
binary data inside XML format as such. Therefore, we have to encode binary data (usually
as a sequence of base-64 encoded values) before wrapping inside XML. The X509
certificate is wrapped inside the wsse:BinarySecurityToken element as the element
content.

4. The ds:Signature element is the same as the one we discussed in the section on XML
signatures. Note two important things:

• Look at the URI attribute of the Reference element. Its value (#myRequestBody) is a

fragment identifier that points toward the SOAP:Body element. This means that the SOAP:Body
element is the one that we have signed and wrapped the signature in XMLDS tags.

• Secondly, also look at what the ds:KeyInfo element contains. It is a

wsse:SecurityTokenReference element. The wsse:SecurityTokenReference
element contains references to security tokens. In our case, it has a child element named
wsse:Reference, whose URI attribute points toward the wsse:BinarySecurityToken

element discussed in point 3 above. This means that the public key inside the X509 certificate
(which the wsse:BinarySecurityToken element wraps) will be used to verify the
signature.

Identity and Authentication
Authentication means verifying the identity of a user. When you check your e-mail, you enter your
username and password to get authenticated. It is assumed that you have kept your password confidential.
Therefore the knowledge of your password is used to make sure that you are the one who is trying to check
your email.

Similarly, one can use certificates as authentication tokens. Recall from the previous example that an X509
certificate was wrapped within the SOAP header of the GetMyAccountBalances method call. The
certificate was actually a security token (just like a password) that the recipient of the WSS message can use
in order to authenticate the user before allowing specially discounted rates for booking.

To simplify identity management, a single department could be designated to handle identities of the same
type. For example, State Controllers Office might handle State employees, DMV citizens, Secretary of State
business users, and Los Angeles County local government. A single identity service could run at a
centralized location (California Service Center in the example below) which would determine if identity
needed to be established based on the selected user interaction then invoke the appropriate identity authority.

Identity Authorities Pattern

2/28/2006 Page 49 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 50 of 86 [DRAFT]
 California Enterprise Architecture Program

Sharing of Authentication Information
A security token is presented to a gatekeeper in order for a user to get authenticated. Now imagine that the
gatekeeper is guarding the main gate of a large building with many offices. Visitors are required to show
their ID cards and get authenticated at the main gate. The gatekeeper checks the ID card by matching it with
his internal record and then allows the visitor to enter the building.

Let's suppose that you want to visit several offices in the building. Each office has an entrance with a
gatekeeper guarding the entrance of each office. You need to get authenticated at the entrance of each office.
The gatekeeper at the entrance of each office repeats the same authentication act.

What if individual offices in the building trust the authentication performed by the gatekeeper of the main
gate? The building will become a trusted domain, of which each individual office will be a part. Naturally if
this type of trust exists between different offices, they would like to share the processing load of the
authentication act.

A possible solution to allow sharing of authentication information is to issue a temporary identification badge
to a visitor at the main gate of the building. The gatekeeper at the main gate will issue a badge to each visitor
after successful authentication. The identification badge will have a short expiry. The visitor will show the
identification badge while entering each office. The office gatekeeper will check the validity of badge before
allowing or disallowing a person to enter the office.

Such scenarios are common in Enterprise Application Integration. Whether applications are running within
or across the boundaries of an enterprise, the sharing of authentication information forms an important part of
application integration effort. Naturally, the sharing of authentication information prevents each application
from having to perform the entire authentication process.

Security Access Markup Language
SAML is an XML vocabulary that defines the syntax necessary to exchange identity information between
applications. The identity information is exchanged in the form of assertions. A security provider service is
responsible for providing assertions about its trusted partners and therefore acts as an SAML assertion
authority.

For example, the California Service Center (CSC) might request an assertion from the Secretary of State
Business Provider Service (a SAML authority). CSC is a requester application and the subject of the
assertion as well. After getting the assertion from the provider service, CSC will wrap the assertion in a
WSS message and send the WSS message to the appropriate department application. The receiving
department will rely on the assertion to decide whether to allow access to its application. The receiving
department is a relying party.

Notice that the SAML specification does not define any security attributes by itself. SAML users are
expected to design their own security attribute namespaces.

In the following listing, we have wrapped an SAML assertion in a WSS message.

In order to understand what information this listing contains, you need to compare it with the previous listing
in #An Introduction to Web Service Security. There are some differences between the two:

1. There is no BinarySecurityToken element in the following listing. Instead of a security token,
we have an assertion. The Assertion element appears as a child of the wsse:Security
element, just like the BinarySecurityToken element in the first listing.

2/28/2006 Page 51 of 86 [DRAFT]
 California Enterprise Architecture Program

2. There are two ds:Signature elements in the following listing. The first appears within the

Assertion element. The SAML authority produced this signature while issuing the assertion, so
that any application who receives this assertion can verify its integrity. We have not shown the
details of this signature for the sake of simplicity.

The second ds:Signature appears as a direct child of the wsse:Security element. This
signature is from our SAML authority, which produced the signature over the
GetMyAccountBalances element in the SOAP body while authoring the request.
Compare the ds:Signature element in previous listing with the ds:Signature element in the
following listing. Both these Signature elements were produced by the application. The one
difference is their ds:KeyInfo elements.

In the previous listing, the ds:KeyInfo element referred to the certificate wrapped inside the
BinarySecurityToken element. But in this the following listing, there is no
BinarySecurityToken element. Instead, we have an Assertion element acting as a security
token. Therefore it makes sense to refer to the assertion from the ds:KeyInfo element.

3. As already explained, the ds:KeyInfo element in the following listing refers to the assertion.
When the message reaches the relying party, they will need to validate the signature in order to
verify requester's identity as well as the integrity of the message. Therefore the recipient will need a
public key to verify the signature. Where is the public key that the application can use to verify the
signature? The Assertion element is the most relevant place to look for the public key.

There is only one key inside the Assertion element. Its name is "MyKey". The application will use
this key to verify the signature.

4. Notice the SubjectConfirmation element within the Assertion element, which specifies
the relationship between the subject and the author of the message that contains the assertion.

The SubjectConfirmation element should specify that the subject authored the message that
contains this assertion. The SubjectConfirmation element has two child elements, namely a
SubjectConfirmation and a ds:KeyInfo element. The two child elements form a pair.

The ConfirmationMethod element wraps the string identifier for the holder-of-key method that
we discussed earlier. The holder-of-key method simply specifies that the author of this message is
the subject of the assertion and it holds the key wrapped by the accompanying ds:KeyInfo
element. Notice that the accompanying ds:KeyInfo element, which is a sibling of the
ConfirmationMethod element, wraps the key named "MyKey"

I have already said that the tour operator uses the same key (named MyKey) to sign the
GetMyAccountBalances element. This provides a link between the WSS message author and
the subject of the assertion. The application will simply need to verify the integrity of the assertion
(by verifying the signature of the SAML authority) and the signature of the requesting application. If
the two signatures validate, the recipient application can be sure that the assertion is not fake and it is
really asserting the author of the WSS message.

<?xml version="1.0" encoding="utf-8"?>
<SOAP:Envelope
 xmlns:SOAP="http://www.w3.org/2001/12/soap-envelope"

2/28/2006 Page 52 of 86 [DRAFT]
 California Enterprise Architecture Program

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <SOAP:Header>
 <wsse:Security>
 <saml:Assertion
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
 MajorVersion=”1”
 MinorVersion=”0”
 AssertionID=”http:// ftb.ca.gov/AuthenticationService/SAMLAssertions/786”
 Issuer=”http:// ftb.ca.gov”
 IssueInstant=”2003-03-11T02:00:00.173Z”>
 <Conditions
 NotBefore=”2003-03-11T02:00:00.173Z”
 NotOnOrAfter=”2003-03-12T02:00:00.173Z”/>
 <AttributeStatement>
 <Subject>
 <NameIdentifier
 NameQualifier=”http:// ftb.ca.gov”>
 MyTourOperator
 </NameIdentifier>
 <SubjectConfirmation>
 <ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </ConfirmationMethod>
 <ds:KeyInfo>
 <ds:KeyName>MyKey</ds:KeyName>
 <ds:KeyValue> ... </ds:KeyValue>
 </ds:KeyInfo>
 </SubjectConfirmation>
 </Subject>
 <Attribute
 AttributeName=”CitizenStatus”
 AttributeNamespace=”http:// ftb.ca.gov /AttributeService”>
 <AttributeValue>TaxLevel5</AttributeValue>
 </Attribute>
 </AttributeStatement>
 <ds:Signature>...</ds:Signature>
 </saml:Assertion>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml -exc-c14n# "/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#myRequestBody">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>BSDFHJYK21f...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 GKLKAJFLASKJ52kjKJKLJ345KKKJ...
 </ds:SignatureValue>

 <ds:KeyInfo>
 <wsse:SecurityTokenReference
 <wsse:KeyIdentifier wsu:id="SAML786Identifier"
 ValueType=”saml:Assertion”>
 http:// ftb.ca.gov /AuthenticationService/SAMLAssertions/786
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP:Header>
 <SOAP-ENV:Body>
 <s: MyAccountBalances
 xmlns:s=“http:// ftb.ca.gov/partnerservice /”
 ID="myDiscountRequestBody">
 <!--Parameters passed with the method call-->
 </s: MyAccountBalances>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A Citizen Request Example
Let’s illustrate the above security principles in an example scenario. In this case, a citizen will apply for a
professional license (doctor, dentist, real estate, CPA, etc.). They will first go to the new California Service
Center which will have a link (or picture, or button) they can clink on to start the online application process.

Notice, the onclick action is encoded with two parameters: identify=y and identifyAs=citizen. The CSC web
application will check these parameters and invoke the Identity process if required. In this case, because we
want to be identified as a Citizen, a request will be sent to the DMV Citizen Provider Service – which, for the

2/28/2006 Page 53 of 86 [DRAFT]
 California Enterprise Architecture Program

purpose of this illustration, we have designated DMV as the Authority for identifying citizens within the
State.

In reality, one would not embed the above parameters in the URL since they would appear as clear text on
the browser status line. Rather, they would be hidden form variables and sent via the HTML POST method.

The Citizen Provider Service will return a WSS Msg (Web Services Security message) containing the basic
credentials for this person. It will be up to the appropriate architects with the State to define the exact details
of basic credentials. The CSC web application will then redirect the request to the appropriate department
application to handle the actual professional license application process.

Let’s say CSC invoked a Professional License web application managed by DCA. The DCA application
would look at the SOAP message and then send a request to the DMV Citizen Provider Service. It would
receive a return message containing the authentication status and basic credentials.

Communities of Interest Pattern

The DCA Professional License application would then consume services at a University to verify that this
person had the appropriate degree. It would also consume a service at the appropriate Exam Board to verify
that this person had a proper license. Additionally, it would consume the Criminal Background Check
service at DOJ, which might send a message to the Federal Social Security Administration Verify SSN
service to confirm the SSN.

2/28/2006 Page 54 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 55 of 86 [DRAFT]
 California Enterprise Architecture Program

Notice there are three circles of trusts. In the above example because DMV, DTS, DCA and DOJ are part of
the Identity Circle of Trust, DCA and DOJ will use the identity information initiated by DTS and provided
by DMV. Further, because Universities and Exam Boards and in the Academic Verification Circle of Trust,
they will use the identity information passed to them by DCA.

However, if DOJ were to invoke a service at an Exam Board that required identification, it would not be
honored because they are not part of the same circle of trust. So, re-identification would be required.

Also keep in mind that different types and levels of security can be used. That is, one might use certificates,
PKI, Kerberos, or other types of tokens. They are all part of the WSS standards.

SOA Firewalls for Web Security
SOAP and XML expose a new attack surface to your organization that could potentially let intruders
penetrate to the core of your crucial business services. Packet-level firewalls can't help you secure Web
services traffic because they can't detect SOAP and XML traffic. For example, because SOAP typically uses
HTTP or SMTP, it easily passes through traditional firewalls—a phenomenon known as the port 80 problem.
So, just when you thought firewalls had matured a new kind of “firewall” has appeared: the Edge
Enforcement Agent.

Like HTML, XML is a markup language that provides a platform-independent standard for exchanging
information between systems on the intranet and Internet. XML differs from HTML, however. HTML is
static: It provides a finite set of ways to structure text information. When new needs arise, the HTML
standard must be updated to accommodate them. In contrast, XML is a more abstract markup language that
provides built-in extensibility through a schema that you define.

XML provides a way to format or structure data and commands or transaction requests. Two applications
that support the same XML schema can easily exchange data and request transactions. But although XML
lets you assemble a message, it doesn't address getting the message from the client to the server and back
again. That task is the job of a protocol—SOAP, in the case of Web services.

SOAP gives applications a way to send XML-based messages over a network within HTTP or SMTP. When
one application needs another application's services, the first application formats a service request (i.e., a
function name and parameters) into XML, then packages the request in a SOAP envelope and sends it. The
target application opens the envelope, executes the request, then uses SOAP to return a response.
Environments such as Windows .NET Framework let the application developer work at a high level of
abstraction, but the Framework still relies heavily on SOAP and XML, so related security concerns still come
into play.

Because of XML's platform-independent nature and its ability to let disparate systems interface easily, most
Web services use well-known XML schemas and consequently are vulnerable to a much broader variety of
potential attacks than are narrower technologies such as Distributed COM (DCOM) and EDI. As a result,
you face a greater likelihood of people sniffing the data, non-authenticated clients directly connecting to and
trying to retrieve data from your Web services server, and Denial of Service (DoS) attacks that use
malformed messages to exploit a well-known schema.

Traditional firewalls, which look at the world in terms of IP addresses, ports, and protocols, address risks that
occur at a much lower level than the level at which SOAP and XML reside. Instead of determining whether
to pass a given packet to the internal network, SOA firewalls validate traffic in terms of Web services,
individual messages, and data elements and evaluate whether to let a given requester access a specific
operation. XML-embedded malware, such as worms, Trojan horses, and DoS attacks, are risks with SOAP
and XML.

You can address SOAP/XML security concerns three ways. First, if your use of SOAP/XML is light and
limited to a stable set of partners, you might be able to get by with a classic firewall. However, the vendor
must enhance the firewall so that it can at least recognize SOAP within HTTP and other protocols. You can
then enable SOAP and XML content between your organization and its trusted business partners and block
everything else.

A second option for SOAP/XML firewalls is to build your own. Although probably not an appealing
alternative for most organizations, building your own firewall is possible, and tools exist to help you do the
job. For example, Microsoft Internet Security and Acceleration (ISA) Server 2000 lets you write Internet
Server API (ISAPI) filters on an ISA server, and Microsoft provides a model ISAPI filter for validating
SOAP/XML messages while they're at the ISA server.

The third, and usually best, option is an application-level SOA firewall that operates behind your classic
firewall to validate only SOAP/XML traffic. Similar to a proxy, this type of product receives the Web service
message as though the application-level firewall were actually the Web service. These products inspect the
message; authenticate the person, program, or organization that sent it; then verify that the sender is
authorized to the Web service and the requested operation. Authentication can use a simple username and
password, a certificate, or a federated system that uses Security Assertion Markup Language (SAML).

An Edge Enforcement Agent can authenticate credentials against sources such as a Lightweight Directory
Access Protocol (LDAP) directory (e.g., Active Directory—AD) or a Remote Authentication Dial-In User
Service (RADIUS) server. Then, the agent checks the requested Web service and operation and the data
elements (i.e., parameters) within the message to make sure the request is valid and authorized for the user.
Either before or after authentication, depending on the product, the agent weeds out malformed messages and
DoS attacks by ensuring that the request's format complies with the corresponding schema. The agent
forwards messages that pass these checks to the appropriate Web service.

Most agents also provide some type of audit functionality and logging so that you can monitor what's
happening with your Web services. Because encryption and XML parsing are CPU-intensive, this more
complex proxy architecture is important to implementing SOA firewalls in high-security and high-volume
Web service scenarios. Because SOAP/XML supports security at the transport level, a SOA firewall can use

2/28/2006 Page 56 of 86 [DRAFT]
 California Enterprise Architecture Program

http://www.windowsitpro.com/Windows/Articles/ArticleID/39755/pg/2/2.html##

2/28/2006 Page 57 of 86 [DRAFT]
 California Enterprise Architecture Program

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) to encrypt the entire HTTP-based message
stream.

But sometimes you need to be able to encrypt or digitally sign portions of an XML document—to facilitate
multiparty transactions, for example. The XML Encryption and XML Signature security standards meet
these intra-document cryptography needs. Because a SOA firewall functions as a proxy Web service, all
authentication, encryption, and decryption take place at the firewall, letting you centrally and consistently
control authentication, encryption, and policy checks even if Web services are scattered on servers
throughout your network. Another advantage is that, because only decrypted traffic can be inspected,
encrypted content is decrypted at the firewall and compared against the firewall's policy.

California SOA Center of Excellence

Introduction
A successful state-wide SOA program will require both centralized and federated components. Singular
vision & goals, governance, enterprise repository management, and several operational functions
(certification lab, UDDI repository, maintain service reference model, service help desk, and search
taxonomy) should be centralized. Service development (and possibly some SOA operations) should be
federated to the producing departments.

Because SOA components are designed for enterprise use, there are a number of critical governance and
operational issues that need to be addressed. Such as:

• How will developers be supported?
• How will business architects and technical architects determine which components already exist?
• How will enterprise components be mapped to business services?
• How will component versioning and release packaging be controlled?
• How will components be certified?
• How will components be tested for performance, availability, and scalability?
• How will component usage be tracked?
• How will developers locate code for an existing service?
• How will enterprise components be promoted and marketed?
• How will service contract compliance among data centers be handled?
• Will there be a centralized help desk?
• How will enterprise troubleshooting be handled?

(A composite service might consist of 4 services, each running in a different data center.)
• Will there be a “reference architecture” based on industry best practices?
• Will there be demo applications?
• Will there be a state-wide search service utilizing a common language? (a taxonomy)

It is obvious that there is a very important need for an oversight group to act as the center hub for the
enterprise. It is recommended that a California SOA Center of Excellence be established to fulfill many of
these tasks. This group would lead the SOA effort, be the “go to” experts for departmental business service
implementers, facilitate discussion groups, lead collaboration efforts, build a reference architecture based on
best practices, and host demos. They could also maintain a performance lab to ensure that critical enterprise
components will meet performance and availability expectations, manage a centralized help desk, handle
compliance escalations via an expert distributed architecture technical staff, and define a state-wide search
taxonomy.

SOA leadership cannot be static. Rather, it should evolve as standards mature and change, vendors products
change based on market dynamics and changing standards, analysts revise their best practices, and
government politics and regulations change.

So the first set of responsibilities of the California SOA Center of Excellence is shown in the following SOA
Excellence diagram.

2/28/2006 Page 58 of 86 [DRAFT]
 California Enterprise Architecture Program

SOA Excellence Model

1. Standards – SOA is comprised of many standards which are managed by several standard bodies. It
will be very important to stay on top of standard developments since they will have a large impact on
SOA architecture. Attending conferences, monitoring discussion groups, and regularly checking
W2C, OASIS, and WS-I websites are all key activities.

2. Vendors & Analysts – Relationships with key vendors is important in order to keep abreast of

product developments and vendor visions for SOA. Subscribing to industry analysts newsletters is
also a good way of staying informed.

3. State & Federal Collaboration – The Federal Enterprise Architecture Group and its ancillary

operations set the standard for states to follow. Additionally, many states are in the process of
implementing SOA-based models. So, ongoing collaboration with other states makes good sense.

4. Operations Feedback – The SOA vision and goals must be practical. So, feedback from SOA

operations must be factored into the vision and goals must be updated accordingly.

2/28/2006 Page 59 of 86 [DRAFT]

5. Briefings & Targeted Presentations – SOA means different things to different people. So, preparing
presentations that are targeted to a particular group will be most effective. For example, executives,
business architects, technical architects, and IT developers all have different priorities within SOA.
So, presenting SOA in terms of specific audience type would be most effective.

 California Enterprise Architecture Program

5. Demos – An SOA Center of Excellence is a great place to demonstrate the SOA environment.

Demos can be built to support the presentations targeted at specific audiences. Often, it is easier to
understand a point by witnessing a demo. Plus, a demo proves out an environment and allows “what
if” scenarios.

6. Reference Architecture – An SOA environment should exist as the model for developers. That is, a

reference implementation that incorporates key SOA components would provide developers
platform-specific components to measure their services against. The Reference Architecture would
include both J2EE and .NET components.

7. Executive SOA Discussion Group – Sponsoring an SOA discussion group for executives would be

one way of providing executives with an easy mechanism for exchanging thoughts and ideas.

SOA Management Model
Service components will be built and tested by individual departments (for example DMV, FTB, BOE, DTS,
etc). Each service will be submitted for certification. Upon approval, the service must go through the data
center deployment process. There are two possible SOA Management models: Centralized Operations and
Federated Operations.

The SOA Centralized Operations model is recommended for the following reasons:

• It will be less costly to invest in SOA operations staff and an SOA infrastructure in a single data
center.

• It will be far easier to manage shared web services that are all running in the same environment, and
then managing web services that are spread out across multiple data centers. Centralized operations

2/28/2006 Page 60 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 61 of 86 [DRAFT]
 California Enterprise Architecture Program

means configuring only one set of network devices (firewalls, routers, etc.) and one set of application
platforms.

• It will be much easier to troubleshoot performance, availability, and scalability problems if all shared

services are running in a single environment.

• Security will be more manageable if “circles of trust” are established between services in the same
environment.

• Backup and disaster recovery wild also be simplified.

SOA Centralized Functions

The second set of California SOA Center of Excellence functions are marked with a(C) in the above
diagram.

1. Centralized Governance
• Service Contract Policies - Service performance contracts will be published by a producing

department for a given web service. Consuming organizations will build their applications
around these contracts. The contract process itself will be established by the Governance portion
of the SOA Center of Excellence. Actual service performance will be monitored by the
individual data centers. They will either work the problem directly or collaborate with the
producing development organization to fix the problem. Additionally, they will notify
governance personnel of services that are out of compliance. Consuming organizations will have
a key part in revising performance contracts.

• Service Certification - Certifying web services will be a key function. All new and revised

services must go through the certification process to ensure that they will play nicely in the
enterprise architecture. The testing will be done in the Certification Lab maintained by the SOA
Center of Excellence.

• SOA Policies and SOA Security - Based on SOA Leadership input, the SOA Center of

Excellence will establish and enforce SOA Policies and SOA Security Policies.

• Shared Services Funding – Effective SOA Management will require an investment in staff,
hardware, software, and tools. Therefore, an appropriate budget must be granted to support
Governance, Enterprise Operations, and maintenance of the Enterprise Repository (core.ca.gov).
Some outside staff (consultants) will likely be required to manage certification and performance
labs, as well as serve as enterprise technical troubleshooters.

2. Centralized Enterprise Repository (core.ca.gov)

• Reference models, portfolio and application information will be managed in a centrally
maintained California Enterprise Repository (core.ca.gov). This includes ensuring that the
repository is always available and it is regularly backed up. A guide on how to search and use
the repository will also be published.

• The repository will have a hierarchical structure for the BRM, SRM, TRM, and DRM. That is,

service components will be related to their business services and the technical components that
support them. The owner, description, version and interface definition of each service will be

2/28/2006 Page 62 of 86 [DRAFT]
 California Enterprise Architecture Program

clearly stated as well as any dependencies. Extensive search capabilities will be provided to
ensure easy access by developers as well as business architects.

3. Centralized Enterprise Operations

• UDDI Repository - A state-wide UDDI repository will be maintained by the SOA Center of
Excellence for the purpose of locating web services.

• Maintain Repository Models – Enterprise Operations would have overall responsibility for

core.ca.gov.

• Developer’s Guide - A developer’s guide will be created that states the general guidelines for
developing web, shared, and enterprise services.

• State Search Taxonomy – Once a state-wide taxonomy is designed in collaboration with all

interested parties, it would most likely be built by DTS. Enterprise Operations would be
responsible for deploying and managing California Service Center searches based on the
taxonomy.

• Certification Lab – Development organizations will package their unit tested services and submit

them to Governance for certification. A certification lab will be set up and published to all
development organizations so they know how their services will be tested. It will take
significant collaboration to initially set up this lab as well as ongoing fine-tuning. The goal
should be to ensure that services play nicely together in a distributed environment, meet their
stated requirements, have stable and well defined interfaces, and meet all stated security
requirements.

• Performance Lab – In cases where a service has a stated performance contract, then they need to

be tested in the performance lab. For composite services, which depend on one or more base
services, the lab must be able to install the composite service and test it on the live network
consuming the base services in the data centers.

• Discussion Groups – Enterprise Operations will facilitate a discussion group for service

developers and operational administrators.

• Developer Workshops – Enterprise Operations will design appropriate workshops for developers.
At minimum, there should be a workshop for developing a base service, and one for developing
a composite service. Workshops should implement best practices as defined by SOA Leadership
and Governance.

• Service Help Desk – A single help desk would be responsible for handling all shared service

customer issues. A comprehensive help database could be built over time to make this job
easier. A single owner for a given problem would increase customer satisfaction.

• Compliance Reporting – Some shared services will have contracts specifying availability,

scalability, and recoverability metrics. Enterprise Operations will be responsible for reporting
out of compliance services.

• Installation and Administration – SOA data centers will be responsible for installing,

configuring, deploying, and registering their services. They will also ensure that proper logging
is turned on and review the operational logs on a regular basis. Appropriate data and files must

2/28/2006 Page 63 of 86 [DRAFT]
 California Enterprise Architecture Program

be backed up on a regular schedule that fits the particular service. Additionally, the services
must be installed and configured to meet performance, availability, and scalability requirements.

• Service Inventory – SOA data centers will be responsible for updating the Enterprise Repository

with information about their services. At minimum, this will include the service owner, version
number, and who is using the service. This last data element might be dynamically updated by
service monitoring tools.

• Incident Management – When a service problem arises, Enterprise Operations is expected to

resolve the problem in an efficient and timely manner. There will be a single owner for each
ticket which should increase customer satisfaction. This probably falls under the ITSM
umbrella.

• Configuration Management – When enhancement or bug fixes are applied by a development

organization, the resulting service will be versioned and resubmitted to the certification group.
Upon successfully certification, the newly version component will be put into production via
Enterprise Operation’s configuration management policy (again, probably ITSM based).

• Release Management – Initial services, as well as major changes to existing services, will be

provided in a release package and submitted for certification. Upon approval, the release
package will be deployed into production by Enterprise Operations following proper release
policies.

• SOA Security Enforcement – Some services will not have security requirements while others

may have very stringent requirements. Services that participate in Identity, Access, and Privacy
implementations must follow specific enterprise security policies. This is especially true for
those services that are part of a “circle of trust”. While the Governance group will determine the
policies, they will be enforced by Enterprise Operations.

• Service Contracts – Enterprise Operations will be responsibility for ensuring availability,

scalability, and recoverability requirements are met as defined in a services contract. They
evaluate data gathered by monitoring tools to determine whether they are in or out of
compliance. They will provide compliance reports to as well as be responsible for getting a
service back into compliance. They may use an escalation process if they need additional help.

• Operational Guides – Enterprise Architecture will provide operational guides detailing startup,

shutdown, and service recovery procedures. They will contain configuration and deployment
packaging information. A section on common error messages and typical troubleshooting
procedures would also be helpful.

• Gather Operational Data – A common set of tools will be specified by Governance and

Enterprise Operations. It is expected that Enterprise Operations will be proactive in evaluating
the data generated by the tools and take appropriate action when potential problems are
indicated.

SOA Federated Functions

1. Federated Service Development
• Services – The prime function of development is to produce web services. It is also their

responsibility to ensure that enterprise requirements are taken into consideration not just

department requirements. Additionally, they must be fully tested, documented, and packaged for
easy and successful deployment. Development personnel must work with the certifying
organization to ensure proper certification prior to releasing to the SOA data center.

• Service Guides – Developers will provide a guide for consumers of their service. At minimum,

the public interface will be detailed as well as examples of how to use the service.

• Enhancements – Developers will collaborate with (????) on enhancement requests. Upon
agreement, a schedule will be provided for incorporating the new functionality.

• Service Contracts – Developers will be responsibility for meeting functionality and performance

requirements as specified in a service contract.

• Test Environment – Each development organization will maintain a suitable test environment to
prove their service meets all enterprise requirements regarding functionality and performance.

• Services Granularity – This is a key component in determining how manageable the SOA

environment will be, as well as the degree of service reuse. If the service interfaces are too
complex or if there are simply too many services, then manageability will become a real
problem. Services need to be easily composed into higher level services to achieve maximum
reuse. So, careful thought and ongoing diligence will be required.

Alternatively, a SOA Federated Operations model could be implemented. However, the following issues
would have to be effectively addressed:

• Inter-department or Inter-agency agreements would probably have to exists to specify how shared
services would be handled across department data centers.

• How will help desk and distributed troubleshooting be handled?

• How will non-compliant composite services be handled?

• Staffing and Funding for multiple SOA Operational Infrastructures.

2/28/2006 Page 64 of 86 [DRAFT]
 California Enterprise Architecture Program

One key issue is how service contract compliance will be handled. It is assumed that adequate monitoring
tools will be deployed in each SOA operations data center. In the above model, the department data center
hosting the service would be responsible for evaluating the data and providing a report on non-compliant
services. The department would also indicate whether the problem lies within this particular data center or
whether it is somewhere else. For example, the problem might be network related or the service is
performing slowly due to over-zealous firewall policies. Or, perhaps a composite service is using four
services each running in a different data center and the problem is believed to be in one of the other data
centers. There needs to be an escalation process to an enterprise organization (Center of Excellence) to help
solve problems outside the particular data center, as well as handle the more technically challenging
distributed troubleshooting. Even if the problem lies within the owning data center, other priorities might
prevent the data center from dispatching technical resources to work on the problem. For example, the FTB
data center might be experiencing problems with processing tax returns in April and therefore, doesn’t have
time to pull resources and put them on an unrelated services problem. In this case, the escalation group
would either have to dispatch their own technical personnel, ask other departments to “volunteer” personnel,
or hire outside consultants.

Managing the above situation will be critical to the success of operating an SOA-based environment.

Another related area, is how will help desk functionality be handled. Will each data center host a help desk?
It probably makes more sense to establish a centralized help desk for all SOA services manned by the
enterprise organization. They could work with individual departments to resolve problems, while
maintaining a single point of contact for the customer.

2/28/2006 Page 65 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendices

Appendix A - Federal SOA
http://www.cio.gov/documents/CIOC_AIC_Service Component Based Architectures _2.0_FINAL.pdf

The Federal Architecture and Infrastructure Committee along with the Federal CIOs Council produced the
Federal Enterprise Architecture which is based on SOA and Web Services.

“An architecture that provides for reuse of existing business services and rapid deployment of new
business capabilities based on existing capital assets is often referred to as a service-oriented
architecture (SOA). “ -- Federal CIOs Council

Service Components
“At the top of the service component hierarchy is a federation of business components. Federal
business components contain multiple business processes or services that can be shared across
agencies. At the lower levels are lower granularity service components that implement elements of
the processes or services. Components at the lower levels are selected and integrated to build
higher-level services. Relating the service component hierarchy to the current FEA reference
models provides the linkage from the efforts at the lines of business level in the BRM and the
supporting services in the SRM. “

Figure 2-3 - A Notational Federal Enterprise Component

Component Architecture Description Standards

“An effective service component-based architecture requires the adoption of and adherence to
technical standards that help promote a common understanding of the use case of service
components in an effective manner. A key goal in describing service component architectures is to
provide a clear separation of concerns between the functional and the operational aspects of the

2/28/2006 Page 66 of 86 [DRAFT]
 California Enterprise Architecture Program

http://www.cio.gov/documents/CIOC_AIC_Service%20Component%20Based%20Architectures%20_2.0_FINAL.pdf

architecture. A unified modeling language-based notation, as illustrated in figure 2-4, is one way to
describe a service component. “

Figure 2-4 - A Notational UML Service Component Description

Federal Service Component Harvesting and Provisioning Model

“The FEA reference models are designed to be used to identify and define reusable service com-
ponents and service component interfaces, and the definition of the federal service component
granularity roughly corresponds to the level of granularity of an IT 300 Exhibit. Reference models are
particularly used for business analysis and capital planning. Figure 2-5 illustrates the notional
relationships of reference models to typical SOA activities. “

2/28/2006 Page 67 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 68 of 86 [DRAFT]
 California Enterprise Architecture Program

Figure 2-5 - Notational SOA and Interaction with FEA Reference Models

Business Modeling

“SOA activities start with business modeling, with the BRM and SRM acting as the source for
structuring capabilities. The BRM and SRM are designed to bridge the gap between capital
planners and enterprise architects, allowing expression of the business services and concepts that
are required to support the operation of the organization. “

Service Component Architecture

“The content gathered during the business modeling phase is communicated via work products or
artifacts to formulate the solution outline. At this macro-level design phase, the solution may be
communicated via high-level service component models to develop a better understanding of the
business domain and the solution. Service components are defined and the dependencies
between collaborating service components are clearly identified. The business services ex-posed
by these service component interfaces support the operational needs of the organization. Non-
functional requirements are also taken into account to determine the constraints that must be
applied to the solution. The business services are typically defined in a technology-neutral
reference model, like the BRM or SRM. “

Component Provisioning and Assembly

“Service component and asset consumers and producers follow separate processes geared to
their respective needs of creating or harvesting business solutions and high-quality service
components. Solution developers (asset consumers) examine existing service components and as-

2/28/2006 Page 69 of 86 [DRAFT]
 California Enterprise Architecture Program

sets to potentially harvest them as reusable assets. Component producers (provisioners), on the
other hand, look at requirements to be the basis for creating components or acquiring service
components for reuse. “

Federal Enterprise Component Registry

“After potential federal enterprise components have been identified, it is important to have a way
for enterprise architects to manage the service component interface profile, publish the profile,
and provide the methodology for accessing the component and other key component
information. In addition, it is important to be able to understand the strategic, tactical, and
operational attributes of the service component. “

“Equally important are the relationships between service components that are being used,
because a failure in one component used by many federal agencies could result in a cascading
catastrophic system failure of business processes that depend on the functionality of that service
component. “

“Because of the complexities associated with service component-based architectures and SOA, it
is very important that mission- or business-critical federal components be property certified. In order
to have a scaleable certification process for federal components, it is important to establish the
criteria for service component certification. It follows that the registry/repository concept for Federal
components will also be based on a hierarchical certification governance process. “

“The FEA reference models are designed to be used to identify and define reusable service com-
ponents. Service components, by design, separate the services they provide from the way those
functions are implemented. This is true at all levels of the service component hierarchy. Service
component-based architectures, if properly implemented, provide a framework to achieve a very
high ROI for federal IT assets. The FEA SRM serves as the foundation for federal enterprise architects
and capital planners to better serve the citizen by utilizing a service component-based
architectural approach to federal IT asset management. “

Federal Enterprise Architecture Management System http://www.feapmo.gov

“FEA analysis and maintenance are greatly facilitated through the use of an Internet-based
automated EA repository and analysis tool—the Federal Enterprise Architecture Management
System (FEAMS). Agencies will be given access to FEAMS and can use it in both capital planning
and architecture development efforts. “

“In addition to storing the FEA reference models, FEAMS will include general information on
agencies’ IT initiatives. Initiative alignment to the BRM Lines of Business that they support, the service
components and technology that these components leverage, and the performance metrics that
they use in achieving performance objectives will be presented. “

Service Component Registry/Repository and Collaboration www.core.gov

“The creation of a component repository and registry for service components is envisioned to be
one of the tangible, ongoing outcomes of the FEA analysis at the service, technology, and data
layers. As reusable service components are identified and harvested, and collaboration between
agencies begins to take place, there will be the need for a collaboration-based repository for
storing, maintaining, and sharing these service components. “

http://www.feapmo.gov/
www.core.gov

2/28/2006 Page 70 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendix B - Web Service Tenets (Microsoft)
The following four tenets are frequently cited:

Tenet 1: Boundaries Are Explicit

Services interact through explicit message-passing over well-defined boundaries. Crossing service
boundaries may be costly, depending upon geographic, trust, or execution factors. A boundary represents the
border between a service's public interface and its internal, private implementation. A service's boundary is
published by means of WSDL and may include assertions dictating the expectations of a given service.
Crossing boundaries is assumed to be an expensive task for several reasons, some of which are listed below:

1. The physical location of the targeted service may be an unknown factor.

2. Security and trust models are likely to change with each boundary crossing.

3. Marshalling and casting of data between a service's public and private representations may require
reliance upon additional resources—some of which may be external to the service itself.

4. While services are built to last, service configurations are built to change. This fact implies that a

reliable service may suddenly experience performance degradations due to network reconfigurations
or migration to another physical location.

5. Service consumers are generally unaware of how private, internal processes have been implemented.

The consumer of a given service has limited control over the performance of the service being
consumed.

The Service-Oriented Integration pattern tells us that "service invocations are subject to network latency,
network failure, and distributed system failures, but a local implementation is not. A significant amount of
error detection and correction logic must be written to anticipate the impacts of using remote object
interfaces." While we should assume that crossing boundaries is an expensive process, we must also exercise
caution in the deployment of local methods designed to minimize such boundary crossings. A system that
implements monolithic local methods and objects may gain performance but duplicate functionality of a
previously defined service (this technique was referred to as "cut and paste" in OOP and shares the same
risks regarding versioning of the service).

There are several principles to keep in mind regarding the first Tenet of SO:

• Know your boundaries. Services provide a contract to define the public interfaces it provides. All
interaction with the service occurs through the public interface. The interface consists of public
processes and public data representations. The public process is the entry point into the service while
the public data representation represents the messages used by the process. If we use WSDL to
represent a simple contract, the <message> represents the public data while the <portType>
represents the public process(es). The article "Data on the Outside vs. Data on the Inside" examines
these issues in greater detail.

• Services should be easy to consume. When designing a service, developers should make it easy for

other developers to consume it. The service's interface (contract) should also be designed to enable
evolving the service without breaking contracts with existing consumers. (This topic will be
addressed in greater detail in future papers in this series.)

http://msdn.microsoft.com/library/en-us/dnpag/html/archserviceorientedintegration.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/dataoutsideinside.asp

2/28/2006 Page 71 of 86 [DRAFT]
 California Enterprise Architecture Program

• Avoid RPC interfaces. Explicit message passing should be favored over an RPC-like model. This
approach insulates the consumer from the internals of the service implementation, freeing service
developers to evolve their services while minimizing the impact on service consumers (encapsulation
by using public messages instead of publicly available methods).

• Keep service surface area small. The more public interfaces that a service exposes, the more difficult

it becomes to consume and maintain it. Provide few well-defined public interfaces to your service.
These interfaces should be relatively simple, designed to accept a well-defined input message and
respond with an equally well-defined output message. Once these interfaces have been designed they
should remain static. These interfaces provide the "constant" design requirement that services must
support, serving as the public face to the service's private, internal implementation.

• Internal (private) implementation details should not be leaked outside of a service boundary. Leaking

implementation details into the service boundary will most likely result in a tighter coupling between
the service and the service's consumers. Service consumers should not be privy to the internals of a
service's implementation because it constrains options for versioning or upgrading the service. The
Anti-Patterns section of this paper provides a detailed example of this issue.

Tenet 2: Services Are Autonomous

Services are entities that are independently deployed, versioned, and managed. Developers should avoid
making assumptions regarding the space between service boundaries since this space is much more likely to
change than the boundaries themselves. For example, service boundaries should be static to minimize the
impact of versioning to the consumer. While boundaries of a service are fairly stable, the service's
deployment options regarding policy, physical location, or network topology are likely to change.

Services are dynamically addressable through URIs, enabling their underlying locations and deployment
topologies to change or evolve over time with little impact upon the service itself (this is also true of a
service's communication channels). While these changes may have little impact upon the service, they can
have a devastating impact upon applications consuming the service. What if a service you were using today
moved to a network in New Zealand tomorrow? The change in response time may have unplanned or
unexpected impacts upon the service's consumers. Service designers should adopt a pessimistic view of how
their services will be consumed—services will fail and their associated behaviors (service levels) are subject
to change. Appropriate levels of exception handling and compensation logic must be associated with any
service invocation. Additionally, service consumers may need to modify their policies to declare minimum
response times from services to be consumed. For example, consumers of a service may require varying
levels of service regarding security, performance, transactions, and many other factors. A configurable
policy enables a single service to support multiple SLAs regarding service invocation (additional policies
may focus on versioning, localization, and other issues). Communicating performance expectations at the
service level preserves autonomy, since services need not be familiar with the internal implementations of
one another.

Service consumers are not the only ones who should adopt pessimistic views of performance—service
providers should be just as pessimistic when anticipating how their services are to be consumed. Service
consumers should be expected to fail, sometimes without notifying the service itself. Service providers also
cannot trust consumers to "do the right thing." For example, consumers may attempt to communicate using
malformed/malicious messages or attempt to violate other policies necessary for successful service
interaction. Service internals must attempt to compensate for such inappropriate usage, regardless of user
intent.

2/28/2006 Page 72 of 86 [DRAFT]
 California Enterprise Architecture Program

While services are designed to be autonomous, no service is an island. A SOA-based solution is fractal,
consisting of a number of services configured for a specific solution. Thinking autonomously, one soon
realizes there is no presiding authority within a service-oriented environment—the concept of an
orchestration "conductor" is a faulty one (further implying that the concept of "roll-backs" across services is
faulty—but this is a topic best left for another paper). The keys to realizing autonomous services are
isolation and decoupling. Services are designed and deployed independently of one another and may only
communicate using contract-driven messages and policies.

As with other service design principles, we can learn from our past experiences with OO design. Peter
Herzum's and Oliver Sims's work on Business Component Factories provides some interesting insights on
the nature of autonomous components. While most of their work is best suited for large-grained, component-
based solutions, the basic design principles are still applicable for service design.

Given these considerations, here are some simple design principles to help ensure compliance with the
second principle of SO:

• Services should be deployed and versioned independently of the system in which they are deployed
and consumed.

• Contracts should be designed with the assumption that once published, they cannot be modified. This

approach forces developers to build flexibility into their schema designs.

• Isolate services from failure by adopting a pessimistic outlook. From a consumer perspective, plan
for unreliable levels of service availability and performance. From a provider perspective, expect
misuse of your service (deliberate or otherwise), and expect your service consumers to fail—perhaps
without notifying your service.

Tenet 3: Services Share Schema and Contract, Not Class

As stated earlier, service interaction should be based solely upon a service's policies, schema, and contract-
based behaviors. A service's contract is generally defined using WSDL, while contracts for aggregations of
services can be defined using BPEL (which, in turn, uses WSDL for each service aggregated).

Most developers define classes to represent the various entities within a given problem space (for example,
Customer, Order, and Product). Classes combine behavior and data (messages) into a single programming-
language or platform-specific construct. Services break this model apart to maximize flexibility and
interoperability. Services communicating using XML schema-based messages are agnostic to both
programming languages and platforms, ensuring broader levels of interoperability. Schema defines the
structure and content of the messages, while the service's contract defines the behavior of the service itself.

In summary, a service's contract consists of the following elements:

• Message interchange formats defined using XML Schema.

• Message Exchange Patterns (MEPs) defined using WSDL.

• Capabilities and requirements defined using WS-Policy.

• BPEL may be used as a business-process level contract for aggregating multiple services.

2/28/2006 Page 73 of 86 [DRAFT]
 California Enterprise Architecture Program

Service consumers will rely upon a service's contract to invoke and interact with a service. Given this
reliance, a service's contract must remain stable over time. Contracts should be designed as explicitly as
possible while taking advantage of the extensible nature of XML schema (xsd:any) and the SOAP processing
model (optional headers).

The biggest challenge of the Third Tenet is its permanence. Once a service contract has been published it
becomes extremely difficult to modify it while minimizing the impact upon existing service consumers. The
line between internal and external data representations is critical to the successful deployment and reuse of a
given service. Public data (data passed between services) should be based upon organizational or vertical
standards, ensuring broad acceptance across disparate services. Private data (data within a service) is
encapsulated within a service. In some ways services are like smaller representations of an organization
conducting e-business transactions. Just as an organization must map an external Purchase Order to its
internal PO format, a service must also map a contractually agreed-upon data representation into its internal
format. Once again our experiences with OO data encapsulation can be reused to illustrate a similar
concept—a service's internal data representation can only be manipulated through the service's contract. Pat
Helland examines several issues related to public and private data representations in "Data on the Outside vs.
Data on the Inside."

Given these considerations, here are some simple design principles to help ensure compliance with the third
principle of SO:

• Ensure a service's contract remains stable to minimize impact upon service consumers. The contract
in this sense refers to the public data representation (data), message exchange pattern (WSDL), and
configurable capabilities and service levels (policy).

• Contracts should be designed to be as explicit as possible to minimize misinterpretation.

Additionally, contracts should be designed to accommodate future versioning of the service through
the extensibility of both the XML syntax and the SOAP processing model.

• Avoid blurring the line between public and private data representations. A service's internal data

format should be hidden from consumers while its public data schema should be immutable
(preferably based upon an organizational, defacto, or industry standard).

• Version services when changes to the service's contract are unavoidable. This approach minimizes

breakage of existing consumer implementations.

Tenet 4: Service Compatibility Is Based Upon Policy

While this is often considered the least understood design tenet, it is perhaps one of the most powerful in
terms of implementing flexible Web services. It is not possible to communicate some requirements for
service interaction in WSDL alone. Policy expressions can be used to separate structural compatibility (what
is communicated) from semantic compatibility (how or to whom a message is communicated).

Operational requirements for service providers can be manifested in the form of machine-readable policy
expressions. Policy expressions provide a configurable set of interoperable semantics governing the
behavior and expectations of a given service. The WS-Policy specification defines a machine-readable
policy framework capable of expressing service-level policies, enabling them to be discovered or enforced at
execution time. For example, a government security service may require a policy enforcing a specific
service level (Passport photos meeting established criteria must be cross-checked against a terrorist
identification system, for example). The policy information associated with this service could be used with a
number of other scenarios or services related to conducting a background check. WS-Policy can be used to

http://msdn.microsoft.com/library/en-us/dnbda/html/dataoutsideinside.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/dataoutsideinside.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp

2/28/2006 Page 74 of 86 [DRAFT]
 California Enterprise Architecture Program

enforce these requirements without requiring a single line of additional code. This scenario illustrates how a
policy framework provides additional information about a service's requirements while also providing a
declarative programming model for service definition and execution.

A policy assertion identifies a behavior that is a requirement (or capability) of a policy subject. (In the
scenario above the assertion is the background check against the terrorist identification system.) Assertions
provide domain-specific semantics and will eventually be defined within separate, domain-specific
specifications for a variety of vertical industries (establishing the WS-Policy "framework" concept).

While policy-driven services are still evolving, developers should ensure their policy assertions are as
explicit as possible regarding service expectations and service semantic compatibilities.

2/28/2006 Page 75 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendix C - SOA Best Practices (IBM)

1. Establish a champion or executive sponsor for SOA.

2. Divide the enterprise into business components (cohesive activities which collaborate with
other business components).

3. Develop a SOA strategy which defines the business context, pain points, reference

architecture and a living roadmap for SOA adoption for a line of business and/or enterprise.

4. Assign service domain owners and implement governance mechanisms to ensure that a
corporate SOA strategy gets implemented in delivered and acquired applications.

5. Extend systems development methodology to address creation of business services with

corresponding design attributes for services.

6. Encapsulate key existing/legacy functionality as services, as appropriate.

7. Favor large grained services that align with business process boundaries.

8. Compose atomic services into coarse-grained business services.

9. Build for consumability; refactor services so that they are as broadly applicable as practical.

10. Use top down and bottom up analysis to create business services which removes redundancy
and creates opportunities for services.

2/28/2006 Page 76 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendix D - SOA Advantages (Patricia Seybold Group)
 Brenda M. Michelson, Sr. VP

SOA Business Advantages:

• Consistent Experience. An SOA can provide a consistent experience for customers and partners
across channels and lines of business.

• Business Agility. An SOA can add new functionality, expose functionality to new channels, and vary

functionality based on context (customer, partner, entry point).

• Mix and Match. An SOA can compose business solutions from a reusable service collection,
leveraging internal and external services.

• Optimize Interactions. An SOA can optimize business interactions for customers, partners, and

internal constituents through the implementation of business scenarios (process, events, and services)
versus traditional applications.

SOA IT advantages:

• Reduction of Costs. Reuse of services reduces IT development and maintenance time and costs.

• Leverage Existing IT Investments. Your service providers are existing code (objects, components,
legacy modules, and application package APIs) and information assets (databases, files, and
documents).

• Transition Strategies. An SOA can provide application and portfolio transition strategies.

Appendix E – WSDL Example

This is an abridged version of the WSDL for Amazon’s E-commerce Service (ECS). The annotations
on the left hand-side describe the WSDL sections. The yellow boxes within the WSDL highlight key elements,
such as data elements, messages and bindings, and their recurrence in the various sections.

 - Patricia Seybold Group

2/28/2006 Page 77 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 78 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendix F – Legacy Integration Patterns

Overview
Since mainframe applications will be around for a long time and many departments depend on the
mainframes for their mission critical applications, the state must plan to integrate mainframe applications
into the new SOA-based environment. Departments should take a close look at their application portfolios
and devise an application maturity plan which would should separate them into categories such as don’t
modify, wrap with web service interfaces, reengineer into Java or .NET applications, or plan to retire.
Following are brief discussion of three popular patterns.

Integrating Existing Mainframe Apps - Unmodified
There are several ESB products that have a broad range of application integration capability. IBM
Websphere ESB, Oracle Fusion, Cape Clear ESB, plus a number of other companies have products in this
area. Enterprise Service Bus products not only provide messaging infrastructure for web services, they also
provide a variety of adapters to integrate native language interfaces (such as COBOL, CICS, MQ Series,
Java, FTP, etc.).

IBM
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

Oracle
http://www.oracle.com/products/middleware/index.html

Cape Clear
http://www.capeclear.com/products/cc6.shtml

Placing Web Service Interfaces on Existing Mainframe Apps
Makes mainframe applications (particularly Natural and Adabas) look like web services. EntireX executes
on the mainframe and exposes the service interfaces. ApplinX solution requires no changes to mainframe
code.

SoftwareAG EntireX
http://www.softwareag.com/Corporate/products/entirex/default.asp

SoftwareAG ApplinX
http://www.softwareag.com/Corporate/products/applinx/default.asp

Compiling COBOL Code into Web Service Languages
Fujitsu Consulting provides a COBOL compiler for a variety of platforms and languages. For example,
NetCOBOL for .NET is a COBOL compiler created specifically for Microsoft's .Net Framework. This
means that COBOL is just another .NET scripting language (like VB.NET, C#, J#, etc.). This allows
COBOL code to be mixed with C# or VB.NET code. It compiles to Microsoft MSIL (language neutral, .NET
runtime) code.

NetCOBOL main page
http://www.netcobol.com/products/

NetCOBOL for .NET
http://www.netcobol.com/products/windows/netcobol.html

http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
http://www.oracle.com/products/middleware/index.html
http://www.capeclear.com/products/cc6.shtml
http://www.softwareag.com/Corporate/products/entirex/default.asp
http://www.softwareag.com/Corporate/products/applinx/default.asp
http://www.netcobol.com/products/
http://www.netcobol.com/products/windows/netcobol.html

2/28/2006 Page 79 of 86 [DRAFT]
 California Enterprise Architecture Program

2/28/2006 Page 80 of 86 [DRAFT]
 California Enterprise Architecture Program

Appendix G - Definitions

AJAX: Asychronous JavaScripting and XML is a web development technique for creating interactive Web
pages. The intent is to make web pages feel more responsive by exchanging small amounts of data with the
server behind the scenes, so that the entire Web page does not have to be reloaded each time the user makes a
change AJAX is available for Java, .NET, PHP, and other languages. http://en.wikipedia.org/wiki/AJAX

Architecture: Representation of the structure of a system that describes the constituents of the system
and how they interact with each other.

Application Architecture: Representation of an application and its parts, their inter-relationships
and functions.

AVDL: Application Vulnerability Description Language. http://www.oasis-
open.org/specs/index.php#avdlv1.0

BPEL: Business Process Execution Language for Web Services provides a means to formally specify
business processes and interaction protocols. BPEL provides a language for the formal specification of
business processes and business interaction protocols. By doing so, it extends the Web Services interaction
model and enables it to support business transactions. BPEL defines an interoperable integration model that
should facilitate the expansion of automated process integration in both the intra-corporate and the business-
to-business spaces. http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Business Component: Represents the implementation of an autonomous business concept, business
service, or business process. It consists of all the technology elements (i.e., software, hardware, data)
necessary to express, implement, and deploy a given business concept as an autonomous, reusable element of
a large information system. It is a unifying concept across the development lifecycle and the distribution
tiers.

Business (Domain) Component: Organizational unit that offers business services operation based
on rules of that business.

Business Component System: Set of cooperating business components assembled together to
deliver a solution to a business problem.

Business Logic Component: Software unit that offers small-grained business logic that has a large
degree of reuse throughout the organization. Sub-components that manage and exe-cute the set of complex
business rules that represent the core business activity supported by the component.

CAP: Common Alerting Protocol. http://www.oasis-open.org/specs/index.php#capv1.0

Component: Independently deployable unit of software that exposes its functionality through a set of
services accessed via well-defined interfaces. A component is based on a component standard, is described
by a specification, and has an implementation. Components can be assembled to create applications or larger-
grained components.

Component Architecture: Internal structure of a component described in terms of partitioning and
relationships between individual internal units.

Component-Based Architecture: Architecture process that enables the design of enterprise
solutions using large service components. The focus of the architecture may be a specific project or the entire
enterprise. This architecture provides a plan of what needs to be built and an over-view of what has been
built already.

http://en.wikipedia.org/wiki/AJAX
http://www.oasis-open.org/specs/index.php#avdlv1.0
http://www.oasis-open.org/specs/index.php#avdlv1.0
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.oasis-open.org/specs/index.php#capv1.0

2/28/2006 Page 81 of 86 [DRAFT]
 California Enterprise Architecture Program

Component Registry: Application designed to provide a directory of available components based on
profile and or specification. Registries usually provide efficient mechanisms for searching for components in
multiple ways, such as by service, price, and/or provider.

Component Repository: Application designed to store component specifications and
implementations. Often provides facilities to efficiently search for and retrieve components for evaluation
against desired component specifications though the search capabilities may be off-loaded to a component
registry.

CORBA: Common Object Request Broker Architecture, created by the Object Management Group
(http://www.omg.org/) vendor-independent architecture and infrastructure that computer applications use to
work together over networks. Using the standard protocol IIOP, a CORBA-based program from any vendor,
on almost any computer, operating system, programming language, and network, can interoperate with a
CORBA-based program from the same or another vendor, on almost any other computer, operating system,
programming language, and network.
COTS Components: Commercial Off the Shelf (COTS) components that can satisfy business process
and data requirements for large functional domains or lines-of-business. Examples of COTS components
would be Enterprise Resource Planning (ERP) products such as those as offered by commercial software
companies.

Data: Factual or numerical business information of record that is maintained by the service component.
The encapsulated service component is fully responsible for maintaining this information.

Data-Level Application Programming Interfaces: Services internal to the service
component that support access to the data of record maintained within the service component. These ser-
vices may span numerous distributed data sources.

DCOM: Distributed Common Object Model is an extension of the Component Object Model (COM) that
allows COM components to communicate across network boundaries. DCOM uses the RPC mechanism to
transparently send and receive information between COM components. Microsoft first introduced it in 1995.

DSML: Directory Services Markup Language. http://www.oasis-open.org/specs/index.php#capv1.0

Distributed Component: Lowest level of component granularity. It is a software element that can
be called at run-time with a clear interface and a clear separation between interface and implementation. It is
autonomously deployable. A distributed component provides low ROI for capital planning purposes.

E-Business Patterns: Patterns for e-business are a group of proven reusable assets that can be used to
increase the speed of developing and deploying net-centric applications, like Web-based applications.

ebXML: Electronic Business using eXtensible Markup Language. http://www.ebxml.org/

Encapsulation: Hiding implementation details within a component so that an implementation is not
dependent on those details.

Enterprise Architecture: Meta-architecture of an organization or the sum of all architectures within
an organization.

Enterprise Component: Large-granularity business component of an organization.

Enterprise Service Bus (ESB): A class of integration software that is intended to support the
deployment of Web services. An ESB combines messaging, basic transformation, and content-based routing.
The inputs and outputs of an ESB are Service Data Objects (SDO).

Extensibility: Ability to extend the capability of a component so that it handles additional needs of a
particular implementation.

http://www.omg.org/
http://www.webopedia.com/TERM/D/Component_Object_Model.html
http://www.webopedia.com/TERM/D/DCOM.html##
http://www.webopedia.com/TERM/D/network.html
http://www.webopedia.com/TERM/D/RPC.html
http://www.webopedia.com/TERM/D/transparent.html
http://www.oasis-open.org/specs/index.php#capv1.0
http://www.ebxml.org/

2/28/2006 Page 82 of 86 [DRAFT]
 California Enterprise Architecture Program

Federated Business Component: Set of cooperating system-level components federated to
resolve the business need of multiple end users often belonging to different organizations.

California Enterprise Component: Very coarse-grained business component of California
Government.

Federation: is a collection of realms/domains that have established trust. The level of trust may vary, but
typically includes authentication and may include authorization.

Fit-Gap Analysis: Examination of components within the context of requirements and to make a
determination as to the suitability of the service component.

Component Granularity: The size of the unit of component under consideration in some context.
The term generally refers to the level of detail at which component is considered, e.g. "You can specify the
granularity for this service component".

Identity Mapping: is a method of creating relationships between identity properties. Some Identity
Providers may make use of id mapping.

Identity Provider: is an entity that acts as a peer entity authentication service to end users and data
origin authentication service to service providers (this is typically an extension of a security token service).

ID-FF: Liberty Identity Federation Framework. ID-FF contains the core specifications that allow for the
creation of a standardized, multi-vendor, identity federation network. The FF consists of protocols, schema
and profiles. https://www.projectliberty.org/resources/specifications.php

ID-SIS: Liberty Identity Services Interface Specifications. ID-SIS uses the ID-WSF (new window) and ID-
FF (new window) specifications to provide networked identity services, such as contacts, presence
detection, or wallet services that depend on networked identity. The SIS contains two specifications:
Personal Profile (ID-SIS-PP): and Employee Profile (ID-SIS-EP):

ID-WSF: Liberty Identity Web Services Framework. ID-WSF provides a basic framework of identity
services. Such services could be identity service discovery and invocation. The WSF consists of schema,
protocols, and profiles. http://www.projectliberty.org/resources/specifications.php

Infrastructure Component: Software unit that provides application functionality not related to
business functionality, such as error/message handling, audit trails, or security.

Interface: Mechanism by which a component describes what it does and provides access to its services.
This is important because it represents the “contract” between the supplier of services and the consumer of
the services.

Intellectual Property: A product of the intellect that has commercial value, including copyrighted
property such as literary or artistic works, and ideational property, such as patents, appellations of origin,
business methods, and industrial processes.

Interface Profile: the sub-component that provides the ability to customize the component for various
uses. The profile can be tailored to suit different deployment architectures well as different sets of business
rules across enterprises. The interface profile can specify the business rules and workflow that are to be
executed when the component is initialized. The profile can specify the architectural pattern that
complements the service component.

Java Server Faces: JavaServer Faces technology is a server-side user interface component framework
for Java technology-based web applications. JSF offers a clean separation between behavior and
presentation. http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

https://www.projectliberty.org/resources/specifications.php
http://www.service-architecture.com/web-services/articles/identity_web_services_framework_id-wsf.html
http://www.service-architecture.com/web-services/articles/identity_web_services_framework_id-wsf.html
http://www.service-architecture.com/web-services/articles/identity_federation_framework_id-ff.html
http://www.service-architecture.com/web-services/articles/identity_federation_framework_id-ff.html
http://www.service-architecture.com/web-services/articles/identity_federation_framework_id-ff.html
http://www.projectliberty.org/resources/specifications.php
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

2/28/2006 Page 83 of 86 [DRAFT]
 California Enterprise Architecture Program

Language Class: Class in an object-oriented programming language to build distributed com-
ponents. This is NOT considered an SRM component. A language class provides very low ROI for
capital planning purposes.

Line of Business: A particular kind of commercial or government enterprise; e.g. "human re-sources"
“financial management” “wholesale banking”.

Message Authentication: is the process of verifying that the message received is the same as the
one sent.

Messaging Interface: Linkage from the service component to various external software modules
(component, external systems, gateways, etc.) and other service components.

Notional Component: Set of services packaged into a component, derived from requirements
definition. A “desired” component, prior to implementation.

Process Component: Software unit that implements the logic of a process.

Realm or Domain: represents a single unit of security administration or trust.

Reuse: Any use of a preexisting software artifact (component, specification, etc.) in a context different
from that in which it was created.

SAML: Security Assertion Markup Language. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

Security Token Service (STS): A security token service is a Web service that issues security
tokens (see WS-Security and WS-Trust). That is, it makes assertions based on evidence that it trusts, to
whoever trusts it. To communicate trust, a service requires proof, such as a security token or set of security
tokens, and issues a security token with its own trust statement (note that for some security token formats this
can just be a re-issuance or co-signature). This forms the basis of trust brokering.

Sender Authentication: is corroborated authentication evidence possibly across Web service
actors/roles indicating the sender of a Web service message (and its associated data). Note that it is possible
that a message may have multiple senders if authenticated intermediaries exist. Also note that it is
application-dependent (and out of scope) as to how it is determined who first created the messages as the
message originator might be independent of, or hidden behind an authenticated sender.

Service: Discrete unit of functionality that can be requested (provided a set of preconditions is met),
performs one or more operations (typically applying business rules and accessing a data-base), and returns a
set of results to the requester. Completion of a service always leaves business and data integrity intact.

Service-Component: Modularized service-based applications that package and process together
service interfaces with associated business logic into a single cohesive conceptual module. Aim of a service
component is to raise the level of abstraction in software services by modularizing synthesized service
functionality and by facilitating service reuse, service extension, specialization and service inheritance.

Service-Component Reference Model (SRM): Service component-based framework that can
provide—independent of business function—a “leverage-able” foundation for reuse of applications,
application capabilities, components, and business services.

Service Data Object (SDO): An Enterprise Service Bus concept where all incoming messages
are converted into service data objects.

Service Interface: Set of published services that the component supports. These are aligned with the
business services outlined in the service reference model.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

2/28/2006 Page 84 of 86 [DRAFT]
 California Enterprise Architecture Program

Service-Level Agreement: A contract or memorandum of agreement between a service provider
and a customer that specifies, usually in measurable terms, what services the service provider will furnish.
Information technology departments in major enterprises have adopted the idea of writing a service level
agreement so that services for their customers (users in other departments within the enterprise) can be
measured, justified, and perhaps compared with those of external (sourcing) service providers.

Service-Oriented Architecture: Architecture that provides for reuse of existing business services
and rapid deployment of new business capabilities based on existing capital assets.

Services Interface: A logical boundary that permits software services to be defined independent of
the service implementation.

Simple Object Access Protocol (SOAP): A simple XML based protocol to let applications
exchange information over HTTP. SOAP is a protocol for accessing a Web Service.

Single Sign On (SSO): is an optimization of the authentication sequence to remove the burden of
repeating actions placed on the end user. To facilitate SSO, an element called an Identity Provider can act as
a proxy on a user's behalf to provide evidence of authentication events to 3rd parties requesting information
about the user. These Identity Providers are trusted 3rd parties and need to be trusted both by the user (to
maintain the user's identity information as the loss of this information can result in the compromise of the
users identity) and the Web services which may grant access to valuable resources and information based
upon the integrity of the identity information provided by the IP.

SPML: Service Provisioning Markup Language. http://www.oasis-open.org/specs/index.php#capv1.0

Solution Assembly: Process of implementing a solution by assembling the necessary components into
a complete solution. This process often involves additional “glue” code to integrate the assembled
components.

Test Harness: Software that automates the software engineering testing process to test the soft-ware as
thoroughly as possible before using it on a real application. Trust Domain: an administered security space in
which the source and target of a request can determine and agree whether particular sets of credentials from a
source satisfy the relevant security policies of the target. The target may defer the trust decision to a third
party thus including the trusted third party in the Trust Domain.

UBL: Universal Business Language. http://www.oasis-open.org/specs/index.php#capv1.0

UDDI: Universal Description Discovery Integration. http://www.uddi.org/

Web Service: Functionality provided by a service, which is exposed using the Internet (SOAP, HTTP,
WSDL, XML, TCP/IP) as the transport mechanism. Can be internally provided as part of a suite of services
or can be offered by external organizations.

Web Service for Remote Portlets: A user-facing Web Service that will provide content, marked
for display, to a portal or other aggregating Web application. This moves Web Services out from the back-
end model layer. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

Web Service Flow: The process of combining and orchestrating web services into a unique flow.
Individual web methods on multiple web services can be invoked in a precise order that meets the specific
application flow requirements.

Workflow Manager: Sub-component that enables one component to access services on other
components to complete its own processing. The workflow manager determines which external component
services must be executed and manages the order of service execution.

Wrapping: Creation of an interface around legacy functionality (code) that exposes the functionality as
services via interfaces that conform to a component specification.

http://www.oasis-open.org/specs/index.php#capv1.0
http://www.oasis-open.org/specs/index.php#capv1.0
http://www.uddi.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

2/28/2006 Page 85 of 86 [DRAFT]
 California Enterprise Architecture Program

WSDL: An XML format for describing network services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints (services).

WSDM: Web Services Data Management.

WSIF: The Web Services Invocation Framework (WSIF) is a simple Java API for invoking
Web services, no matter how or where the services are provided. WSIF allows stubless or
completely dynamic invocation of a Web service, based upon examination of the meta-data
about the service at runtime. http://ws.apache.org/wsif/

WS-Addressing: describes how to specify identification and addressing information for messages.

WS-Authorization: will describe how to manage authorization data and authorization policies.

WS-BusinessActivity: This specification provides the definition of the business activity coordination
type that is to be used with the extensible coordination framework described in the WS-Coordination
specification. The specification defines two specific agreement coordination protocols for the business
activity coordination type: BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion. Developers can use any or all of these protocols when
building applications that require consistent agreement on the outcome of long-running distributed activities.
http://www-128.ibm.com/developerworks/library/specification/ws-tx/

WS-Federation: describes how to manage and broker the trust relationships in a heterogeneous
federated environment, including support for federated identities, sharing of attributes, and management of
pseudonyms.

Web Services Inspection Language (WSIL): The WS-Inspection specification "defines how
an application can discover an XML Web service description on a Web server, enabling developers to easily
browse Web servers for XML Web services. WS-Inspection complements the IBM- and Microsoft-
pioneered 'Universal Description, Discovery and Integration (UDDI)' global directory technology by
facilitating the discovery of available services on Web sites unlisted in the UDDI registries, and builds on
Microsoft's SOAP Discovery technology built into Visual Studio .NET.

WS-MetadataExchange: describes how to exchange metadata such as WS-Policy information and
WSDL between services and endpoints.
WS-Policy: represents a set of specifications that describe the capabilities and constraints of the security
(and other business) policies on intermediaries and endpoints (e.g. required security tokens, supported
encryption algorithms, privacy rules) and how to associate policies with services and endpoints.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp

WS-Privacy: will describe a model for how Web services and requestors state privacy preferences and
organizational privacy practice statements. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwssecur/html/securitywhitepaper.asp

WS-Referral: WS-Referral is a protocol that enables the routing strategies used by SOAP nodes in a
message path to be dynamically configured. SOAP itself provides a distributed processing model where
SOAP messages can have content destined for specific processing nodes. WS-Routing adds to SOAP the
capability of describing the actual message path. WS-Referral provides a mechanism to dynamically
configure SOAP nodes in a message path to define how they should handle a SOAP message. It is a
configuration protocol that enables SOAP nodes to delegate part or all of their processing responsibility to
other SOAP nodes. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsreferspecindex.asp

http://ws.apache.org/wsif/
http://www-128.ibm.com/developerworks/library/specification/ws-tx/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsreferspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsreferspecindex.asp

2/28/2006 Page 86 of 86 [DRAFT]
 California Enterprise Architecture Program

WS-Reliability: Web Services Reliability (WS-Reliability) is a SOAP-based protocol for exchanging
SOAP messages with guaranteed delivery, no duplicate s, and guaranteed message
ordering. WS-Reliability is defined as SOAP header extensions, and is independent of
the underlying protocol. http://developers.sun.com/sw/platform/technologies/ws-reliability.html

WS-ReliableMessaging: this specification describes a protocol that allows messages to be delivered
reliably between distributed applications in the presence of software component, system, or network failures.
The protocol is described in this specification in an independent manner, allowing it to be implemented using
different network transport technologies. To support interoperable Web services, a SOAP binding is defined
within this specification. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsrmspecindex.asp

WS-Routing: WS-Routing is a simple, stateless, SOAP-based protocol for routing SOAP messages in an
asynchronous manner over a variety of transports like TCP, UDP, and HTTP. With WS-Routing, the entire
message path for a SOAP message (as well as its return path) can be described directly within the SOAP
envelope. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsroutspecindex.asp

WSRP: Web Services for Remote Portlets. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp

WS-SecureConversation: describes how to manage and authenticate message exchanges between
parties, including security context exchanges and establishing and deriving session keys. http://www-
128.ibm.com/developerworks/library/specification/ws-secon/

WS-Security: describes how to attach signature and encryption headers to SOAP messages. In addition,
it describes how to attach security tokens, including binary security tokens such as X.509 certificates and
Kerberos tickets, to messages. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-security.asp

WS-Security SAML Token Profile: http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.0.pdf

WS-Transactions and WS-Coordination: describes how to enable transacted operations as part
of Web service message exchanges.

WS-Trust: describes a framework for trust models that enables Web services to securely
interoperate by requesting, issuing, and exchanging security tokens.
http://webservices.xml.com/lpt/a/ws/2003/06/24/ws-trust.html

XACML – Extensible Access Control Markup Language. http://www.oasis-
open.org/specs/index.php#capv1.0

http://developers.sun.com/sw/platform/technologies/ws-reliability.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsrmspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsrmspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsroutspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsroutspecindex.asp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www-128.ibm.com/developerworks/library/specification/ws-secon/
http://www-128.ibm.com/developerworks/library/specification/ws-secon/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-security.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-security.asp
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://webservices.xml.com/lpt/a/ws/2003/06/24/ws-trust.html
http://www.oasis-open.org/specs/index.php#capv1.0
http://www.oasis-open.org/specs/index.php#capv1.0

	 Target Audience
	 SOA Introduction
	The Accidental Architecture
	SOA
	Loosely Coupled Interfaces
	Web Services
	Service
	Message
	Dynamic Discovery
	Web Service Analogy
	Web Service Types
	Web Service Interfaces

	Web Services Orchestration
	Web Service Standards
	Enterprise Service Bus (ESB)

	 California SOA Goals
	 California SOA Principles
	California SOA Architecture
	California Enterprise Architecture
	California E-Gov Business Services Metamodel
	Reference Enterprise Architecture
	Enterprise Services
	Shared Services
	Reference SOA Architecture

	SOA Service Patterns
	Application Consuming Web Services Pattern
	Federated Service Interfaces Pattern
	Federated Composite Web Services Pattern
	Federated Search Service Pattern
	Federated Search Engines Pattern
	California Service Center (CSC) at DTS Enterprise Service Examples
	RSS (Real Simple Syndication) Pattern

	California Business Reference and Service Reference Models
	California SOA Security Model
	Introduction
	XML Security for Web Services
	Basic Cryptographic Concepts
	Message Integrity and User Authentication with XML Signatures
	An Introduction to Web Service Security
	Identity and Authentication
	Identity Authorities Pattern
	Sharing of Authentication Information
	Security Access Markup Language
	A Citizen Request Example
	Communities of Interest Pattern
	SOA Firewalls for Web Security

	 California SOA Center of Excellence
	Introduction
	SOA Excellence Model
	SOA Management Model
	SOA Centralized Functions
	SOA Federated Functions

	Appendix A - Federal SOA
	 Appendix B - Web Service Tenets (Microsoft)
	 Appendix C - SOA Best Practices (IBM)
	 Appendix D - SOA Advantages (Patricia Seybold Group)
	 Appendix E – WSDL Example
	 Appendix F – Legacy Integration Patterns
	Overview

	Integrating Existing Mainframe Apps - Unmodified
	Placing Web Service Interfaces on Existing Mainframe Apps
	Compiling COBOL Code into Web Service Languages
	 Appendix G - Definitions

